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1. HEAT EQUATION

Consider an infinite row of rooms with people in them. Suppose that in each

time period and in each room 10% of people move to the room to the left and 10%

of people move to the room to the right. Let f(x, t) denote the number of people

in room x at time t. Then we have

f(x, t+ 1)− f(x, t) = 0.1f(x− 1, t) + 0.1f(x+ 1, t)− 0.2f(x, t)

= 0.1([f(x+ 1, t)− f(x, t)]− [f(x, t)− f(x− 1, t)]

Supposing there are many rooms and each room has small people in it we can

approximate this equation by

Dtf(x, t) = 0.1DxDxf(x, t)

whereDi stands for the derivative with respect to i. This is called the heat equation.

Let’s assume that f is defined on [0, π], that we know the initial distribution of

people f(x, 0) and that f(0, 0) and f(pi, 0) are 0.

A good function for f(x, 0) is sin(x) or sin(2x) or perhaps some possibly infinite

linear combination of sin(nx)s. Further it turns out that in some sense of conver-

gence any nice function on [0, π] can be approximated by a linear combination of

sin(nx)s. This suggests that the solution to the heat equation will have the form

f(x, t) = a1(t) sin(x) + a2(t) sin(2x) + ...

If we put this into the heat equation we get

a′1(t) sin(x) + a′2(t) sin(2x) + ... = 0.1(−a1(t) sin(x)− a2(t) sin(2x)2
2 − ...)
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One solution then has a′i(t) = −0.1i2ai(t) which obviously has solution ai(t) =

Cie
−0.1(i2)t where Ci is a constant.

We can now see that a property of the solution is that as time goes on there the

people disperse more and more. We now have to solve for the constants Ci.

The integral of f(x, t) sin(ix) from 0 to π is the integral of ai(t) sin(ix)
2 from 0

to π which is ai(t)
π
2 . So Ci is equal to

2
pie

0.1(i2)t times the integral of f(x, t) sin(ix)

from 0 to π. This still depends on t so there’s probably more to do here.

2. HEAT EQUATION AND INTEGRATION

You failed to notice two dodgy things about my derivation.

1) I took the derivative of an infinite sum by by differentiating each term of the

sum:

d

dt
(a1 sin(x) + a2 sin(2x) + ...) = a′1 sin(x) + a′2 sin(2x) + ...

2) I took the integral of an infinite sum by integrating each term of the sum∫ π

0

(a1 sin(x) sin(mx) + a2 sin(2x) sin(mx) + ...)dx

=

∫ π

0

a1 sin(x) sin(mx)dx+

∫ π

0

a2 sin(2x) sin(mx)dx+ ...)

Are these maneuvers valid?

If yes then I’ve solved the heat equation.

This is the question posed by Joseph Fourier that led to the development of a

new theory of integration.

The more general and basic question is

3) Let f1, f2, ... be a sequence of real valued functions defined on [a, b] that

converges pointwise to f . Does
∫ b

a
fn(x)dx converge to

∫ b

a
f(x)dx? That is, does

limn

∫ b

a
fn(x)dx =

∫ b

a
limn fn(x)dx?

A good answer to this question will tell us when 1 and 2 are valid maneuvers.

Let me leave you with two examples that show that 3 can fail.

Define a sequence f1, f2, ... of real valued functions on [0, 1] each having integral

equal to 1. Suppose that fn(x) is positive if x belongs to [n−1
n , n

n+1 ] and is otherwise

0.

This sequence of functions converges to f = 0 whose integral is 0. So for this

sequence the answer to 3 is no. That is,
∫ 1

0
fn(x)dx = 1 for all n but

∫ 1

0
f(x)dx = 0.

This example works because the functions are getting taller and taller. The area

under the graph stays the same but the functions support is shrinking.

Thus for the answer to 3 to be yes we need the functions in the sequence f1, f2, ...

to be bounded: there is a number N such that |f1(x)| ≤ N for all x in [a, b].
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Even if I do this I can still get a ”no” answer to 3 as follows. Define the sequence

f1, f2, ... of real valued functions on [0, 1] by saying that fn(x) is equal to 1 if x

belongs to { 1
n ,

2
n , ...

n
n} and is otherwise equal to 0.

This sequence of functions converges to a function f that is equal to 1 on a

countable set and is otherwise equal to 0.

The answer to 3 is ”no” because
∫ 1

0
fn(x)dx = 0 for all n and this is not equal

to
∫ 1

0
f(x)dx because f is not Riemann integrable (the upper Riemann sum of f

is equal to 1 and the lower Riemann sum is equal to 0). Note that we’d like the

integral of f to be 0because f is equal to 0 at many more points than it is equal to

1 but the Riemann integral can’t deal with a function like f .

Therefore another condition we need for the answer to 3 to be a yes is that the

sequence of functions converges to a function we can integrate.

We could stick with the Riemann integral and put more restrictions on our

sequence of functions. Or perhaps we could create a new integral, one that agrees

with the Riemann integral when a function is Riemann integrable but which can

integrate functions like f in my second example.

3. THE LEBESGUE INTEGRAL

Consider a real valued function f defined on [a, b]. The Riemann integral of

f is constructed in the following way. The interval [a, b] is divided into pieces

a < c1 < ... < cn < d. The lower Riemann sum is

(c1 − a) inf{f(x) | x ∈ [a, c1]}+ ...+ (d− cn) inf{f(x) | x ∈ [cn, d]}.

The upper Riemann sum is

(c1 − a) sup{f(x) | x ∈ [a, c1]}+ ...+ (d− cn) sup{f(x) | x ∈ [cn, d]}.

The function f is Riemann integrable if the difference between the upper and lower

Riemann sum can be made arbitrarily small by cutting the domain of the function

up into enough pieces. The number the upper and lower Riemann sums converge

to is called the Riemann integral of f .

If f is continuous then it is Riemann integrable. If f is Riemann integrable then

it must be fairly continuous.

Not all functions are Riemann integrable. In the last note I showed that the

function f defined on [0, 1] that has value 1 when x ∈ { 1
n ,

2
n , ...,

n
n} for some natural

number n and has value 0 otherwise is not Riemann integrable. There we had a

sequence of Riemann integrable functions converging to this f . This was a problem

for interchanging the limit and integration operators.

Here is another way to compute the area under the graph of a function. Let f

be a nonnegative bounded real valued function defined on [a, b]. For 0 < t1 < t2 <
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... < tn, where tn is an upper bound for f , let Sti be the set of points x such that

f(x) ≥ ti. That is Sti = {x | f(x) ≥ ti}. For any set S define IS to be the function

that takes value 1 on S and 0 otherwise. Consider the Lebesgue sum

t1

∫ b

a

ISt1
(x)dx+ (t2 − t1)

∫ b

a

ISt2
(x)dx+ ...+ (tn − tn−1)

∫ b

a

IStn
(x)dx

. We are cutting the area under the graph into horizontal strips. The Riemann

integral uses vertical strips. Why does this work. Well, we have that

(t1ISt1
(x) + (t2 − t1)ISt2

(x) + ...+ (tn − tn−1)IStn
(x)) + max{ti − ti−1 | i

= 1, 2, ..., n} ≥ f(x) ≥ t1ISt1
(x) + (t2 − t1)ISt2

(x) + ...+ (tn − tn−1)IStn
(x).

Taking the Riemann integral of each term in this inequality shows that as the image

of the function is cut more finely the Lebesgue sum converges to the Riemann

integral. (This of course supposes that all the functions in this inequality are

Riemann integrable.) One advantage of this is that we don’t need as much structure

on the domain of the function to compute its integral.

In the Lebesgue sum above the integral
∫ b

a
ISti

(x)dx is a Riemann integral. It

is the area of the set Sti . Notice though that the set Sti may be such that the

function ISti
is not Riemann integral. The way we are going to make the Lebesgue

integral more general than the Riemann integral is by finding a way to compute

the area of sets Sti for which ISti
may not be Riemann integrable.

Given a set S in Rn let’s denote the volume of S by µ(S) and call it the measure

of S. We want µ to satisfy our intuitive notions of volume. Here are some reasonable

demands

1) Translation and rotation invariance. The measure of a set S is the same as

the measure of a translation or rotation of S.

2) The measure of the union of finitely many disjoint sets is the sum of their

measures. In fact because this is analysis we’re going to say that the measure of

the union of countably many disjoint sets is the infinite sum of their measures. It

isn’t completely clear to me why this should be true.

So far, assigning each subset of Rn a measure of 0 satisfies these axioms so we

will assume that some sets have positive measure

3) The measure of [0, 1]n is 1 for any n ≥ 1. That is, the volume of the n-cube

is one.

Here is a surprising result. It turns out that these axioms are inconsistent with

one another, even in one dimension. Here is the proof. Define the relation ∼ on[0, 1]

by saying that x ∼ y means that x− y is a rational number. This is an equivalence

relation and so it gives a partition of the set [0, 1] into equivalence classes. Let S

be a set containing exactly one point from each equivalence class. Now for each
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rational number q in (0, 1) define Sq the be the set of points x in [0, 1] such that

x− q belongs to S + n for some integer n.

First of all, Sr and Sq are disjoint whenever r is not equal to q. To see this let q

and r be rational numbers in (0, 1) and let x be a point in Sq and Sr. This implies

that x − r belongs to S − n1 for some integer n1 and so x − (r + n1) belongs to

S. Similarly x − (q + n2) belongs to S for some integer n2. But (x − (r + n1)) −
(x − (q + n2)) is a rational number so that these two points belong to the same

equivalence class. This implies that these points are the same so that q = r.

I now claim that the measure of Sq is equal to the measure of S. We can write

Sq as the union of the sets {x ∈ Sq | x ≤ q} and {x ∈ Sq | x > q}. The first

of these sets is equal to {x ∈ S | x ≥ 1 − q}; the second of these sets if equal to

{x ∈ S | x ≤ 1− q}. So by axiom 2 my claim is true.

Now consider the union or the collection of sets {Sq | q ∈ Q ∩ (0, 1)}. I claim

that this union is equal to [0, 1]; clearly by the definition of Sq it is a subset of

[0, 1]. Let x be a point in [0, 1]. Then x belongs to an equivalence class. Let y be

the point of this equivalence class in S. Then x − y is a rational number so that

x− (x− y) = y and y belongs to S. Thus x belongs to Sx−y and so is in the union

of the collection of sets {Sq | q ∈ Q ∩ (0, 1)}. So the union of this collection of sets

equals [0, 1]. Therefore by axiom 3 the measure of this union is 1.

Using these three observations and applying axiom 2 to the countable collection

of disjoint sets {Sq | q ∈ Q ∩ (0, 1)} gives

1 = µ(
⋃

{Sq | q ∈ Q ∩ (0, 1)}) =
∑

q∈Q∩(0,1)

µ(Sq) =
∑

q∈Q∩(0,1)

µ(S).

But this is completely impossible. Either µ(S) is positive in which case the sum on

the right diverges or it is zero in which case the sum on the right converges to zero.

So we’ve proved that the axioms are inconsistent.

The way we are going to resolve this inconsistency is to restrict the collection of

sets that we are allowed to take the measure of. We will still get to keep the three

axioms but our function µ will have a smaller domain.

4. OUTER MEASURE

We want our measure µ to de a function from some set of “measurable” subsets

of Rn to the extended real numbers (that is, R ∪ {∞}) that satisfies our three

axioms:

1) The measure of a measurable set is the same as the measure of a translation

or rotation of this set. 2) The measure of a disjoint countable union of measurable

sets is equal to the sum of the measure of each of the sets.
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For the third axiom we will say that a set B is an open box open box of Rn if

it can be written as the cartesian product of nonempty open intervals. That is, for

some a1 < b1, a2 < b2, ..., an < bn we have B = (a1, b1)× (a2, b2)× ...× (anbn).

Before, our third axiom was that the measure of the n-cube [0, 1]n is equal to

one. Our new third axiom is a straightforward generalization of this.

3) The measure of an open box B = (a1, b1)×(a2, b2)×...×(anbn)is(b1−a1)(b2−
a2)...(bn − an) and we will denote this V ol(B).

We want to find out what what subsets we can allow to be measurable so that

these axioms do not contradict one another, i.e so there actually exists a measure

satisfying the axioms. Hopefully the domain of this measure is large enough that

whenever the Riemann integral
∫ b

a
IS(x)dx of the indicator function is defined then

so is the measure of S and hopefully for many sets where this Riemann integral is

not defined the measure will be. Then the Lebesgue integral will be more general

than the Riemann integral. So we may be able to show that limits and integration

commute in certain cases (It turns out that one can show this much more easily for

the Lebesgue integral than directly for the Riemann integral).

This third axiom gives us the power to approximately measure sets. We will call

our approximation function the outer measure.

The outer measure µ∗ is a function from all subsets of Rn to the extended real

numbers (that is, R ∪ {∞}). The outer measure of a set S is the infimum of the

measure of any union of open boxes that contain S. That is µ∗(S) = inf{µ(B1 ∪
B2 ∪ ...) | B1, B2, ... are open boxes whose union contains S}. We still don’t know

how to compute the measure of the union of open boxes unless they are disjoint.

When they are not disjoint we have the following approximation. Let B1, B2, ...

be open boxes. Then B1, B1 − B2, B3 − (B2 ∪ B1), ... is a countable collection of

disjoint open sets with the same union as B1, B2, B3, .... By axiom 2 we have

µ(B1 ∪B2 ∪B3 ∪ ...) = µ(B1) + µ(B2 −B1) + µ(B3 − (B2 ∪B1)) + ...

≤ µ(B1) + µ(B2) + µ(B3) + ...(∗)

Let’s compute the outer measure of some sets.

What is the outer measure of a singleton set {v}? It’s zero because we can put

this point in an arbitrarily small open box.

What is the outer measure of a countable set {v1, v2, ...}? It’s also zero because

we can put each point in an arbitrarily small box and then use the result that we

just derived, that is result (*), about the measure of the union of open boxes being

no more than the sum of the measures of these open boxes. Incidentally, this shows

the rational numbers have outer measure zero.
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What about the unit interval [0, 1]. What is the outer measure of this set? We

can compute an upper bound for this is 1 because we can place [0, 1] inside close

fitting open box. We would hope that the outer measure of this set is 1 but this is

difficult to show. The problem is that the outer measure of [0, 1]∩Q is zero because

this is a countable set. This implies that we are going to have to use a property

of the real numbers that the rational numbers do not have to show that the outer

measure of [0, 1] is nonzero.

Finally, let’s consider a k-dimensional subspace S of Rn where k < n. What is

the outer measure of this set? Just like the volume of a square is zero and the area

of a line is zero we would like the outer measure of a lower dimensional subspace

to be zero. How can we show this?

First, let’s show that Rk has zero outer measure. To do this first consider the

k-dimensional square [0, 1] × [0, 1] × ... × [0, 1]. We will show that this has outer

measure zero. It’s possible to contain this square in the union of (m + 1)k n-

dimensional open boxes with edges of length 1
m . The measure of each of these n

dimensional open boxes is 1
mn . We can now use the approximation (*) to show that

the measure of the k-dimensional square [0, 1] × [0, 1] × ... × [0, 1] is no more than
(m+1)k

mn . Since the m we chose was arbitrary this can be made as close to 0 as we

want. So the outer measure of the k-dimensional square [0, 1]× [0, 1]× ...× [0, 1] is

zero.

Now tile Rk with translations of these k-dimensional squares. This can be done

with countably many of these squares. Applying the approximation (*) again shows

that the outer measure of Rk is zero.

Our k-dimensional subspace may be a rotation of Rk but this is fine - we can

rotate it to Rk and then by axiom 1 it follows that its outer measure is also zero.

5. ALGEBRAIC PROPERTIES OF MEASURABLE SETS

A subset F of Rn is measurable if for all subsets S of Rn the outer measure of

S is equal to the outer measure of the points common to both S and F plus the

outer measure of the points that are in S but not in F . That is,

µ∗(S) = µ∗(S ∩ F ) + µ∗(S − F ).

What are the algebraic properties of the set of measurable sets. For example, is

the union of two measurable sets measurable? Is the complement of a measurable

set measurable?

Let’s first show two things about the outer measure.

(1) The outer measure is countably subadditive: if E1, E2, ... are subsets of Rn

then the outer measure of their union is no more than the sum of their outer
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measures. That is,

µ∗(E1 ∪ E2 ∪ ...) ≤ µ∗(E1) + µ∗(E2) + ...

This is true because if B1
1 , B

1
2 , ... are open boxes whose union contains E1, B

2
1 , B

2
2 , ...

are open boxes whose union contains E2, and so on, then the union of all these open

boxes contains E1 ∪ E2 ∪ ....
(2) The outer measure is monotone: if E1 and E2 are subsets of Rn such that E1

is a subset of E2 then the outer measure of E1 is no more than the outer measure

of E2.

This is true because if B1, B2, ... are open boxes whose union contains E2 then

they are open boxes whose union contains E1.

Let us now consider the algebraic properties of measurable sets.

(3) The complement of a measurable set is measurable.

Let E be a measurable set. Let S be a subset of Rn. Then by the measurability

of E µ∗(S ∩Ec) + µ∗(S −Ec) = µ∗(S −E) + µ∗(S ∩E) = µ∗(S) which implies Ec

is measurable.

(4) The union of two measurable sets is measurable.

Let E1 and E2 be measurable sets. Let S be a subset of Rn. By subadditivity

of the outer measure µ∗(S ∩ (E1 ∪ E2)) + µ∗(S − (E1 ∪ E2)) ≥ µ∗(S). We can get

the reverse inequality as follows. Not that E1 ∪E2 = E1 ∪ (E2 ∩Ec
1). Therefore by

subadditivity and measurability

µ∗(S ∩ (E1 ∪ E2)) + µ∗(S − (E1 ∪ E2))

≤ µ∗(S ∩ E1) + µ∗(S ∩ (E2 ∩ Ec
1)) + µ∗(S − (E1 ∪ E2))

= µ∗(S ∩ E1) + µ∗((S ∩ Ec
1) ∩ E2)) + µ∗((S ∩ Ec

1)− E2)

= µ∗(S ∩ E1) + µ∗(S − E1) = µ∗(S)

so we’re done.

(5) The empty set is measurable.

Let S be a subset of Rn. Then µ∗(S ∩ ∅) + µ∗(S − ∅) = µ∗(∅) + µ∗(S) and this

equals µ∗(S) because the outer measure of the empty set is zero.

Note that for free we have that the intersection of two measurable sets is mea-

surable because the complement of the intersection of two sets is the union of their

complements.

6. THE COLLECTION OF MEASURABLE SETS IS A SIGMA

ALGEBRA

Let X be a set. A σ-algebra of X is a collection of subsets of X containing the

empty set and which is closed under complements and countable unions. That is,
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∅ belongs to it, if E belongs then so does Ec, and if E1, E2, ... each belong then so

does the union of these sets.

(1) I claim that the measurable subsets of Rn are a σ-algebra of Rn.

We showed in the previous note that the empty set is measurable. We also

showed the complement of a measurable set is measurable.

All we need now do is show the countable union of measurable sets is measurable.

Let E1, E2, ... be measurable sets. We may assume these are pairwise disjoint.

The reason we may is that we can define the sequence of sets E1, E2 − E1, E3 −
(E1 ∪ E2), ... and this is a pairwise disjoint sequence of measurable sets (each of

these sets is measurable because of the algebraic properties of measurable sets we

showed in the last note).

Our goal is to show the union
⋃
{E1, E2, ...} is a measurable set. That is, we

must show that for all subsets S of Rn the outer measure of S is equal to the outer

measure of points common to both S and
⋃
{E1, E2, ...} plus the outer measure of

points that are in S and not in
⋃
{E1, E2, ...}. That is,

µ∗(S) = µ∗
(
S ∩

⋃
{E1, E2, ...}

)
+ µ∗

(
S −

⋃
{E1, E2, ...}

)
.

We showed in the previous note that the outer measure is countably subadditive.

This implies

µ∗(S) ≤ µ∗
(
S ∩

⋃
{E1, E2, ...}

)
+ µ∗

(
S −

⋃
{E1, E2, ...}

)
.

We are left only to show the reverse inequality. Let’s first prove a lemma.

(2) Let E and F be measurable and disjoint sets. Let S be a subset of Rn. Then

the outer measure of S intersected with the union of E and F is equal to the outer

measure of S intersected with E plus the outer measure of S intersected with F .

That is,

µ∗(S ∩ (E ∪ F )) = µ∗(S ∩ E) + µ∗(S ∩ F ).

This is simple to prove:

µ∗(S ∩ (E ∪ F )) = µ∗(S ∩ (E ∪ F ) ∩ E) + µ∗(S ∩ (E ∪ F )− E)

= µ∗(S ∩ E) + µ∗(S ∩ F ).

Let’s prove another lemma.

(3) The outer measure is monotone: if E and F are subsets of Rn and E is a

subset of F then the outer measure of E is no more than the outer measure of F .

That is, µ∗(E) ≤ µ∗(F ).

This follows from the definition of outer measure: If B1, B2, ... are open boxes

whose union contains F then the union of these open boxes contains E.

Going back to our proof of (1), for each natural number n we have, by the fact

that a finite union of measurable sets is measurable (proved in the last note) and
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the fact that the outer measure is monotone, that

µ∗ (S) = µ∗
(
S ∩

⋃
{E1, E2, ..., En}

)
+ µ∗

(
S −

⋃
{E1, E2, ..., En}

)
=

n∑
i=1

µ∗(S ∩ Ei) + µ∗
(
S −

⋃
{E1, E2, ..., En}

)
≥

n∑
i=1

µ∗(S ∩ Ei) + µ∗
(
S −

⋃
{E1, E2, ..., }

)
.

Since this is true for all n we have

µ∗(S) ≥
∞∑
i=1

µ∗(S ∩ Ei) + µ∗
(
S −

⋃
{E1, E2, ..., }

)
≥ µ∗

(
S ∩

⋃
{E1, E2, ...}

)
+ µ∗

(
S −

⋃
{E1, E2, ...}

)
.

The last step is because the outer measure is countably subadditive.

7. THE LEBESGUE MEASURE

Recall our axioms for measure:

(1) µ is a function from a class of subsets of Rn to the extended real numbers

[0,∞]. (2) Translation invariance: The measure of a set is the same as the measure

of a translated version of that set. That is, for all sets Sin the domain and for all

v in Rn, µ(S) = µ(S + {v}). (3) Countable additivity: The measure of countably

many disjoint sets E1, E2, ... is equal to the sum of their measures. That is,

µ(E1 ∪ E2 ∪ ...) = µ(E1) + µ(E2) + ....

(3) The measure of the n-box [0, 1]n is one. That is, µ([0, 1]n) = 1.

We saw that these axioms are contradictory when the domain of the measure

is any subset of Rn. Consequently, our approach was to limit the domain of the

measure. The way we did this was to define the outer measure of any subset S of

Rn by the formula

µ∗(S) = inf{
∞∑
i=1

Vol(Bi) | B1, B2, ...are open boxes whose union contains S}

We then defined a subset S of Rn to be measurable if for any subset E of Rn the

outer measure of E is equal to the outer measure of the points common to E and

S plus the outer measure of the points in E and not in S. That is,

µ∗(E) = µ∗(E ∩ S) + µ∗(E − S).

Then we showed that the collection of measurable sets is a σ-algebra. That is, it

contains the empty set, is closed under complements, and is closed under countable

unions.
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We have shown that the outer measure satisfies translation invariance for any

set S. We have shown that the outer measure of the n-cube [0, 1]n is one.

[1] What we will do now is show that when the outer measure’s domain is re-

stricted to measurable sets it is countably additive. We will then have completed

our program of constructing a measure that satisfies our axioms.

We have shown previously that the outer measure is countably subadditive and

monotone. Suppose we were able to show the outer measure of the union of two

disjoint sets is the sum of their outer measures. The proof is then trivial. Let

E1, E2, ... be measurable and disjoint sets. Then by monotonicity

µ∗(E1 ∪ E2 ∪ ...) ≥ µ∗(E1,∪E2 ∪ ... ∪ En) = µ∗(E1) + µ∗(E2) + ...+ µ∗(En).

Since this holds for all n it holds in the limit. That is,

µ∗(E1 ∪ E2 ∪ ...) ≥ µ∗(E1) + µ∗(E2) + ....

The reverse inequality holds by subadditivity.

Let’s show that if E1 and E2 are disjoint measurable sets then the outer measure

of their union is the sum of their outer measures. Let S be a subset of Rn. By

measurability of E1 ∪ E2 we have

µ∗(S ∩ (E1 ∪ E2)) = µ∗(S ∩ (E1 ∪ E2) ∩ E2) + µ∗(S ∩ (E1 ∪ E2)− E2)

= µ∗(S ∩ E2) = µ∗(S ∩ E1).

Taking S = E1 ∪ E2 gives

µ∗(E1 ∪ E2) = µ∗(E2) + µ∗(E1).

So we’re done. We have shown that the outer measure defined on the collection of

measurable sets satisfies our axioms of measure. For this reason we give it a special

name, we call it Lebesgue measure.

8. UNIQUENESS OF THE LEBESGUE MEASURE

We have shown that there exists a function µ∗ from the set of measurable subsets

of Rn to the extended real numbers [0,∞] such that

(1) µ is translation invariant: for any measurable set S the measure of µ is that

same as the measure of µ translated by any vector v. That is, µ(S + {v}) = µ(S).

(2) µ is countably additive: if E1, E2, ... are measurable and disjoint then the

measure of their union is the sum of their measures. That is, µ(E1 ∪ E2 ∪ ...) =

µ(E1) + µ(E2) + ....

(3) The measure of the n-cube is one. That is, µ([0, 1]n) = 1.

The measure we found that satisfies these axioms was the outer measure µ∗

defined by



MEASURE, INTEGRATION, AND BANACH SPACES 13

µ∗(S) = inf{Vol(B1)+Vol(B2)+... | B1, B2, ... open boxes whose union contains S}

for any subset S of Rn. Here, an open box is the cartesian product of n open

intervals.

A measurable subset of Rn is any subset E such that for each subset S of Rn

the outer measure of S is equal to the outer measure of the points common to S

and E plus the outer measure of the points in S but not in E. That is,

µ∗(S) = µ∗(S ∩ E) + µ∗(S − E).

Because µ∗ satisfies out axioms on the measurable sets we called it Lebesgue

measure and denoted it by µ.

Here is a question: Is the Lebesgue measure the only measure that satisfies the

axioms on the measurable sets?

Suppose m is a function from the measurable sets to the extended real numbers

satisfying the same axioms. By countable additivity we can deduce that the measure

m of any open box with sides of length 1
m is equal to the volume of this open box

which is the Lebesgue measure of this open box.

Let E be a Lebesgue measurable subset of Rn. let ϵ > 0. There exist open boxes

B1, B2, ... whose union covers S such that

µ(S) + ϵ ≥ µ(B1) + µ(B2) + ... = m(B1) +m(B2) + ... ≥ m(B1 ∪B2 ∪ ...) ≥ m(S).

Since this holds for all ϵ we have µ(S) ≥ m(S). I’ll leave the reverse inequality

for next time.

For the reverse inequality let’s first consider a measurable subset S of the n-

cube [0, 1]n. Let T be the set of points in [0, 1]n and not in S. That is, T equals

the set [0, 1]n − S. We have shown that µ(T ) is at least m(T ). Since the n-cube

is measurable, countable additivity of µ gives 1 = µ(S) + µ(T ) and countable

additivity of m gives 1 = m(S) +m(T ). So µ(S) = 1− µ(T ) ≥ 1−m(T ) = m(S).

By translation invariance of µ and m this holds whenever S is a translate of [0, 1]n.

Now suppose that S is any measurable subset of Rn. Let v be a point of Rn

with integer coordinates. Then

µ(S) = µ(S ∩
⋃

{[0, 1]n + {v} | v ∈ Zn}

=
∑
v

µ(S ∩ ([0, 1]n + {v})) =
∑
v

m(S ∩ ([0, 1]n + {v}))

= m(S ∩
⋃

{[0, 1]n + {v} | v ∈ Zn} = m(S).

So we are done.
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This is great because now we know that the Lebesgue measure satisfies our

axioms on the measurable sets and also that it is the only function on the measurable

sets that satisfies our axioms.

Would this still hold if we did not require the new measure to satisfy axiom 3:

the measure of the n-cube is one? Well, suppose we had a function m from the

measurable subsets to the extended real numbers satisfying translation invariance

and countable additivity, and suppose that for this function m([0, 1]n) = t where

0 < t <∞ (if t = 0 then the measure of any set is zero; if t = ∞ then the measure

of most sets in infinite). But note that the function 1
tm satisfies all three axioms,

so by our previous result this function is equal to the Lebesgue measure. So in this

case for any measurable set S we have that m(S) = tµ(S).

One final thing for this email. Let’s show that if I take a measurable set in Rn

and rotate it then the Lebesgue measure of the original set is equal to the Lebesgue

measure of the rotated set. Let g be our rotation function. Let m be the function

on the measurable sets defined by the formula m(S) = µ(g(S)). That is, m is the

function that given a set computes the Lebesgue measure of the rotation of that set

under the rotation function g. Note that this function is well defined because the

rotation of a measurable set is measurable. We want to show that m(S) = µ(S)

for every measurable subset S of Rn. A smart way to do this is to show that m

satisfies our three axioms. Then we can apply our last result that the Lebesgue

measure is the only function satisfying these axioms.

Is m translation invariant?

Let S be a measurable subset of Rn and v a point in Rn. Then because Lebesgue

measure is translation invariant and a rotation is a linear transformation we have

m(S + {v}) = µ(g(S + {v})) + µ(g(S) + {v}) = µ(g(S)) = m(S).

So m is translation invariant.

Ism countably additive? Let S1, S2, ... be measurable and disjoint subsets of Rn.

Then because the rotation function g is a linear transformation and keeps disjoint

sets disjoint and because the Lebesgue measure is countably additive we have

m(S1∪S2∪...) = µ(g(S1)∪g(S2)∪) = µ(g(S1))+µ(g(S2))+... = m(S1)+m(S2)+....

So m is countably additive.

We now know from our previous work that m is proportional to Lebesgue mea-

sure.

Does m assign a value of 1 to the n-cube?

Let t denote the number m assigns to the n-cube. We know that for any mea-

surable set S of Rn we have m(S) = tµ(S).
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Consider the unit ball B of Rn. Because g is a rotation function it takes B to

itself. Therefore tµ(B) = m(B) = µ(g(B)) = µ(S).

So t = 1 and we are done.

9. MEASURABLE FUNCTIONS

Our goal has been to develop a new theory of integration. Our motivation was

to figure out when the integral of a function is equal to the sequence of integrals

of functions that converge to the function. That is, if f1, f2, ... is a sequence of

functions converging (in some way) to a function f when does
∫
f equal the limit

of the sequence
∫
f1,
∫
f2, ....? This problem was motivated by our trying to find a

solution to the heat equation.

So far we have defined Lebesgue measure. We know how to measure the area

of a large class (the class of measurable subsets) of subsets of Rn. The reason we

constructed the Lebesgue measure is because we had in mind a way to use it to

compute the Lebesgue integral of a function. The idea of the Lebesgue inegral was

to slice the range of a function into intervals and to look at the area of the pre-image

of each of these intervals. To get the area under the graph of the function we than

just sum over the intervals of the partition taking the largest value the function

takes in the interval and multiplying this by the area of the pre-image.

Before we do this we need to talks about what types of functions we can integrate.

The trouble is that the pre-image of an interval may not be a measurable set. Since

we don’t know how to compute the area of a set which is not measurable we would

not be able to integrate a function for which the pre-image of some interval in the

range was not a measurable set. So let’s make the following definition:

Definition: A function f : Rn → R is called measurable if the set {x ∈ Rn |
f(x) ≤ t} is a measurable set for all real numbers t.

Next time we will prove things about measurable functions.

Let’s build some tools.

Claim 1: If f : Rn → R is a measurable function, then the set {x ∈ Rn | f(x) <
t} is measurable.

Proof: We can write this set as the countable union of sets:
⋃∞

n=1{x ∈ Rn |
f(x) ≤ t− 1

n}. Each set in this union is measurable by the definition of a measurable

function. Because the collection of measurable sets is a σ-algebra, the countable

union of measurable sets is measurable. QED

Now a definition. Perhaps we would like to integrate a function f : Rn → Rm.

In this case we can write f as the m-tuple of functions (f1, f2, ..., fm) where each

coordinate of this m-tuple is a function from RntoR. When we integrate f what

we want is the m-tuple (
∫
f1,
∫
f2, ...,

∫
fm). So our definition for the measurability

of f should be that each of the component functions is measurable.
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Definition: A function f : Rn → Rm where f = (f1, f2, .., fm) is a measurable

function if each fi is a measurable function.

Since our definition of the Lebesgue integral will consider the pre-image of an

interval in the range of a function we would like the pre-image of intervals to be

measurable sets. Let’s prove something like this for open boxes.

Claim 2: If f : Rn → Rm is a measurable function and B is an open box of Rm,

then the set {x ∈ Rn | f(x) ∈ B} is a measurable set.

Proof: The open box B can be written as (a1, b2) × (a2, b2) × ... × (am, bm).

We can write f as the m-tuple (f1, f2, ..., fm). Then the set we want to show is

measurable can be written as the intersection of sets:
m⋂
i=1

({x ∈ Rn | fi(x) ≤ ai}c ∩ {x ∈ Rn | fi(x) ≥ bi}c)

which is measurable because the sets in this expression are measurable and the

measurable sets form a σ-algebra. QED

Just for fun, we can prove the more general claim that the pre-image of any open

set under a measurable function is a measurable set.

Claim 3: If f : Rn → Rm is a measurable function and U is an open subset of

Rm, then the set {x ∈ Rm | f(x) ∈ U} is measurable.

Proof: We can write U as the countable union of open boxes B1, B2, ... with

rational coordinates. The set we want to show is measurable can then be written

as

{x ∈ Rn | f(x) ∈
∞⋃
i=1

Bi}

which equals the set
∞⋃
i=1

{x ∈ Rn | f(x) ∈ Bi}.

By Claim 2 this expression is the countable union of measurable sets. Since the set

of measurable sets is a σ-algebra it is measurable. QED

And, just for fun, the converse to Claim 3 is true. That is,

Claim 4: If f : Rn → Rm is a function and for each open subset U of Rm the

set {x ∈ Rn | f(x) ∈ U} is measurable, then f is a measurable function.

Proof: Let x1, x2, ..., xm be real numbers. We would like to show that the set

{x ∈ Rn | f(x) ≤ (x1, x2, ..., xm)} is a measurable set. This is true because we can

write this set as the intersection of sets, that by our hypothesis, are measurable

sets:

m⋂
i=1

{x ∈ Rn | fi(x) ∈ (xi,∞)}c.

QED
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This last claim is interesting because it implies that the notion of a measurable

function does not depend on the coordinate system we use on Euclidian space. It

only depends on the open sets.

It will be useful to know whether the product and sum of measurable functions

is measurable. And they are. The following claim helps us show this.

Claim 1: If f : Rn → Rm is a measurable function and g : Rm → Rl is

a continuous function, then the composition g ◦ f : Rn → Rl is a measurable

function.

Proof: By Claim 3 and Claim 4 on the previous note we can show that g ◦ f
is a measurable function by showing that the pre-image of any open set U under

this function is a measurable set. Let’s do this. But this is certainly true because

one definition of a continuous function is that the inverse image each open set is an

open set. So

(g ◦ f)−1(U) = f−1 ◦ g−1(U)

and this is the inverse image of an open set by a measurable function, which is a

measurable set. QED

A corollary of this claim is that the sum of two measurable functions is a measur-

able function and the product of two measurable functions is a measurable function.

This follows because addition is a continuous function from R2 to R and product

is a continuous function from R2 to R.

Here is an interesting example that shows the composition of two measurable

functions need not be measurable.

Example: For each number t in the unit interval [0, 1] consider the binary ex-

pansion of t:
i1
2
+
i2
4
+
i3
8
...

where i1, i2, ... is a sequence of 0s and 1s. Note that this expansion is some-

times not unique. For example, 10101111111... where the 1s repeat is the same

as 1011000000... where the zeros repeat. Let’s rule out one of these cases and

suppose that our sequence i1, i2, ... never becomes an infinite sequence of 1s.

Consider the function f : [0, 1] → [0, 1] defined by the formula

f(t) =
2i1
3

+
2i2
9

+
2i3
27

. So this function maps the sequence 10010110... to 20020220... and reads it in base

3. The image of this function is contained in a famous set called the Cantor set.

The Cantor set is the subset of the unit interval [0, 1] whose base three expansions

have no 1s. Another way to think about this set is that you begin with the unit

interval [0, 1], then you remove the middle third of this interval so your set is

now [0, 1/3] ∪ [2/3, 1], and you then remove the middle thirds of both of these
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intervals, and so on forever. One of the reasons this set is interesting is that it is

an uncountable and closed set with measure zero.

Getting back to our example, we know that the image of f is a subset of the

Cantor set and so, by monotonicity of Lebesgue measure, its measure is zero. We

also know that the function f is injective (one-to-one): each ternary expansion is

unique because each binary expansion is unique. It is easy to show that any non-

decreasing function is measurable. Since f is non-decreasing it is also measurable.

Now let’s show that the composition of two measurable functions need not be

a measurable function. Let h be any function from [0, 1] to the real numbers.

Consider the function g : [0, 1] → R where g(t) = h ◦ f−1(t) if t ∈ f([0, 1]) and

g(t) = 0 otherwise. Note that this function takes a value of 0 for all values in

the unit interval, except those in the image of f . We have previously shown that

any function that agrees with a measurable function except on a set of measure

zero is also a measurable function. Therefore g is a measurable function because it

agrees with the zero function (a measurable function) everywhere except on a set

of measure zero.

What happens if you compose g with f . You get

g ◦ f = h ◦ f−1 ◦ f = h.

But h was any real valued function on [0, 1]. And since there are functions on

[0, 1] that are not measurable we have constructed an example of composing two

measurable functions and getting a function that is not measurable.

10. SEQUENCES OF MEASURABLE FUNCTIONS

Recall that the purpose of our new theory of integration is to allow us decide

when the limit of a sequence of integrals
∫
f1,
∫
f2,
∫
f3, ... converges to the integral

of the limit function f (the limit of the sequence of functions f1, f2, ...).

In our pursuit of this goal a natural question is whether the limit f of a sequence

of measurable functions f1, f2, ... is a measurable function. If this were not the

case out theory would be hobbled by the requirement that we could only consider

particular sequences of measurable functions. But fortunately this is not the case.

In fact the point-wise limit of measurable functions is a measurable function.

Theorem 1: If f1, f2, ... is a sequence of measurable functions converging point-

wise to a function f , then f is a measurable function.

Proof: This is where the fact that the set of measurable sets being a sigma

algebra is useful. Recall that a function f : Rn → R is a measurable function if

the set {x ∈ Rn | f(x) ≤ t} is a measurable set. We can rewrite this set as

{x ∈ Rn | ∀k > 0∃m such that ∀n ≥ mfn(x) ≤ t− 1/k}.
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This can be written as
∞⋂
k=1

∞⋃
m=1

⋂
n≥m

{x ∈ Rn | fn(x) ≤ t− 1/k}.

but, because each function fn is a measurable function the sets in brackets are

measurable. And because the set of measurable sets is a σ-algebra the expression, a

countable intersection of a countable union of a countable intersection of measurable

sets, is itself a measurable set. QED

That’s good.

As we will see our theory of integration will be built on something called simple

functions.

Definition: A simple function f : Rn → R is a measurable function whose image

is a finite set.

Let f be a measurable function and denote its image by {y1, y2, · · · , yn}. Then

there exist disjoint and measurable sets E1, E2, ..., En on which f takes each of its

values. We may then express the function f by the formula

f(x) = y1χE1
(x) + y2χE2

(x) + · · ·+ ynχEn
(x)

where χS denotes the characteristic function on S, that is the function that takes

a value of one on S and zero elsewhere. We will build up our theory of integration

using these functions. In particular it will be very easy for us to take the integral of

these functions. And we will approximate the integral of other functions by simple

function that are close. Thus, another natural question is what sort of simple

functions can we approximate using simple functions. The answer turns out to be

all measurable functions.

Theorem 2: If f is a nonnegative and bounded measurable function, then there

exists a sequence of simple functions f1, f2, ... that converge pointwise to f .

Proof: For each n = 1, 2, ... define the function fn(x) =
k
n if k

n ≤ f(x) ≤ k
n+1 for

k = 1, 2, .... Each function fn is measurable because f is a measurable function and

to the sets on which each fn takes a value of k
n is a measurable set. And because

f is bounded we have that the image of each fn is a finite set. So f1, f2, ... is a

sequence of measurable functions which clearly converges to f . QED

11. LITTLEWOOD’S THREE PRINCIPLES

J.E.Littlewood was a British mathematician. He proposed three key principles

of measure theory. The first is that every measurable set is almost a finite union of

open boxes. The second is that every pointwise convergent sequence of measurable

functions almost converges uniformly. The third is that every measurable function

is almost a continuous function. Let’s state and prove each of these.
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Principle 1: Every measurable set is almost a finite union of open boxes.

The idea is the following.

Theorem 1: Let E be a measurable subset of Rn with finite measure. Little-

wood’s first principle says that if ϵ > 0, then there exists a set E′ ⊂ Rn such that

µ(E − E′), µ(E′ − E) < ϵ.

The restriction that E be a set with finite measure is important. The result

would otherwise not be true. For example, it would not be true if E were the union

of open boxes of measure one in Rn centered at points whose coordinates are all

prime numbers.

To prove the result we will approximate E with a compact set and then cut up

a finite cover of this compact set.

Proof: Let δ1 and δ2 be positive real numbers. By a previous result there exists a

compact set K ⊆ E such that µ(E−K) < δ1. Let B1, B2, · · · be open boxes whose

union cover K such that µ(K) + δ2 ≥ µ(B1) + µ(B2) + · · · . Since K is compact it

is contained in the union of finitely many of the open boxes (say, B1, B2, · · · , Bn).

Then

µ(K) + δ2 ≥ µ(B1) + µ(B2) + · · ·µ(Bn) ≥ µ(B1 ∪B2 ∪ · · · ∪Bn).

Denote the open box Bi by

(ai1, b
i
1)× (ai2, b

i
2)× · · · (ain, bin)

. Let ckj be the k’th biggest element of {a1j , b1j , a2j , b2j , · · · , anj , bnj }. Consider the

collection of open boxes

{C | C can be written as (cm1 , c
m+1
1 )× (ct2, c

t+1
2 )× · · · × (csn, c

s+1
n )}

which I’ll denote by C.

This collection of open boxes is finite. Its union is a subset of B1 ∪B2 ∪ · · · ∪Bn

and the difference (B1∪B2∪· · ·∪B2)−
⋃

C has Lebesgue measure zero since it it the

union of subsets of Rn contained in subspaces of dimension less than n. Therefore

the Lebesgue measure of B1 ∪B2 ∪ · · ·Bn is equal to the Lebesgue measure of
⋃

C.

Let E′ denote
⋃
C. By countable additivity and monotonicity of µ we have

µ(E − E′) = µ(E −K)− µ(E′ −K) = µ(E −K)− (µ(E′)− µ(K ∩ E′))

≤ µ(E −K) + µ(B1 ∪B2 ∪ · · · ∪Bn)− µ(K) < δ1 + δ2.

Since we can choose δ1 + δ2 to be smaller than ϵ this proves the first inequality.

Likewise

µ(E′ − E) = µ(E′ −K)− µ(E −K) = µ(E′ −K)− µ(E −K)

= µ(E′)− (µ(E′ ∩K)− µ(E −K))
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≤ µ(B1 ∪B2 ∪ · · · ∪Bn)− µ(K) + µ(E −K) < δ1 + δ2.

QED

Principle 2: Every pointwise convergent sequence of measurable functions almost

converges uniformly.

First of all, what does pointwise convergence and uniform convergence mean?

Let f1, f2, ... be a sequence of functions. We say that this sequence converges

pointwise to a function f if for each point x the sequence of numbers f1(x), f2(x), ...

converges to the number f(x). Uniform convergence is stronger. Not only do

we need the sequence of functions to converge pointwise but we each sequence of

numbers f1(x), f2(x), ... to converge at at least some speed. That is, for each number

ϵ > 0 there exists a number N such that for all points x we have | f(x)−fn(x) |< ϵ

whenever n ≥ N .

The formal statement of Littlewood’s second principle is the following.

Theorem 2: (Egorov) Let E be a measurable subset of Rn which has finite

measure. If f1, f2, ... is a sequence of measurable functions defined on E that

converges pointwise to a function f , then for each ϵ > 0 there exists a subset E′ of

E such that µ(E − E′) < ϵ such that f1, f2, ... converges uniformly to f on E′.

We also need the hypothesis that E is a set with finite measure. To see why

consider the following sequence of measurable functions. Let fn denote the function

from R to R such that fn(x) = 1 when x ≥ n and fn(x) = 0 otherwise. But the

only sets on which this sequence converges uniformly are bounded above.

Proof: Consider the set of points in E such that some function in our sequence

with an index greater than n is at least distance 1
k from f . That is, the set

Si,k =

{
x ∈ E | there exists j ≥ i such that | f(x)− fj(x) |≥

1

k

}
.

A point x belongs to the intersection S1,k∩S2,k∩ ... if for every n the number fn(x)

is at least distance 1
k from f(x). This is not possible though because our sequence of

functions f1, f2, ... converges pointwise to f . Also, E ⊇ S1,k ⊇ S2,k ⊇ ... and so by

the continuity of measure (a result we proved earlier) limi µ(Si,k) = 0. Therefore

we can find a number nk such that the measure of Snk,k is less than ϵ
2k
. That

is, µ(Snk,k) <
ϵ
2k
. We can do this process for all k to get the sets Sn1,1, Sn2,2, ....

Clearly we can choose the numbers n1, n2, ... to be increasing. The set Snk,k is a set

of points where the function is not within 1/k of f . So let E′ = E−(Sn1,1∪Sn2,2∪...).
Does the sequence of functions f1, f2, ... converge uniformly on this set? Well, let

δ > 0. Uniform convergence on this set means that there is a number N such that if

x is a point in this set and n ≥ N , then fn(x) is within distance δ of f(x). For some

k we have that ϵ
2k

< δ and we know no point in the set E′ belongs to set Snk,k.

We can use nk as N in the definition of uniform convergence. Hence the sequence
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f1, f2, ... converges uniformly to f on E′. What about the measure of E−E′. Well,

this is just the measure of Sn1,1 ∪Sn2,2 ∪ ... and by our clever construction we have

that

µ(Sn1,1 ∪ Sn2,2 ∪ ...) ≤ µ(Sn1,1) + µ(Sn2,2) + ... < ϵ.

QED

Principle 3: Every measurable function is almost continuous.

Theorem 3: (Lusin) Let f : Rn → R be a measurable function. Then for

each ϵ > 0, there exists a continuous function g : Rn → R such that the set

{x ∈ Rn | f(x) ̸= g(x)} has measure < ϵ.

Littlewood’s description is accurate this time. We don’t need any condition such

as for the domain of the function to be finite. We will prove the theorem for when

f : E → R and E is a measurable subset of Rn.

Proof: First assume that f is a simple function. Then we can write f as y1χE1
+

y2χE2
+ ... + ynχEn

where y1, y2, ..., yn are real numbers and E1, E2, ..., En are

measurable and disjoint sets. Consider the set E1. By a previous result there exists

a compact subset K1 of E1 such that µ(E1 −K1) <
ϵ
n . Do this for E2, ..., En too.

There is a positive number c such that each of these sets is distance at least c apart.

Now define the function gi by saying that gi(x) is equal to 1 whenever x belongs

to Ki, equal to 1 − 2d(Ki,x)
c when d(x,Ki) < c, and equal to 0 otherwise. Then

define g = g1 + g2 + ... + gn. The function g is continuous because it is the sum

of continuous functions. Also f(x) = g(x) whenever x is in K1 ∪ K2 ∪ ... ∪ Kn.

Therefore the measure of the set {x ∈ E | f(x) ̸= g(x)} is equal to

µ

(
E −

n⋃
i=1

Ki

)
= µ

(
n⋃

i=1

(Ei −Ki)

)
=

n∑
i=1

µ(Ei −Ki) < ϵ.

So we have proved the theorem for the case where f is a simple function.

Now consider the case where f : E → R is any measurable function with

µ(E) < ∞. We can assume that f is negative because if the theorem is true

for nonnegative functions it is also true for non nonnegative functions. This is

because any nonnegative function can be written as the difference of two nonneg-

ative functions, that is, we let f− be the function whose value is −f(x) whenever

f(x) ≤ 0 and 0 otherwise, and we let f+ be the function whose value is f(x) when-

ever f(x) ≥ 0 and 0 otherwise. Then we can write the function f as f+ − f−.

Using our assumption that the measure of E is finite we can also assume that the

function f is bounded. If it isn’t bounded we can choose a number n such that the

measure of the set of points in E that take values above n has very small measure.

This follows from the continuity of measure. Let’s also assume that the function is

bounded above by 1 - If we can prove the result for this case we can prove it for

any bound by multiplying the function by a constant.
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With these assumptions - that f is nonnegative and bounded above by 1, and our

earlier assumption that the measure of E is finite, let’s prove the theorem. Define

for each n = 0, 1, ... the simple function fn by the formula

fn(x) =
i

n
if
i

n
≤ f(x) <

i+ 1

n
for i = 0, 1, ...

This is a sequence of simple functions converging to f . Let ϵ > 0. For each fn

there exists a continuous function gn that agrees with fn except perhaps on a set

Sn with measure less than ϵ
2n . Each of the functions gn is uniformly continuous.

The sequence g1, g2, ... converges pointwise to f on the set E − (S1 ∪ S2 ∪ ...). By

Egorov’s theorem there exists a subset E′ of E − (S1 ∪ S2 ∪ ...) on which g1, g2, ...

converges uniformly to f and such that µ(E − (S1 ∪ S2 ∪ ...) − E′) < ϵ. Denote

the function that g1, g2, ... converges to by g. This function is continuous because

a sequence of uniformly continuous functions converge uniformly to it. Finally,

µ ({x ∈ E | f(x) ̸= g(x)}) ≤ µ (E − E′)

= µ (S1 ∪ S2 ∪ ...) + µ(E − (S1 ∪ S2 ∪ ...)− E′) < 2ϵ.

So we have proved the case for when f is defined on a set with finite measure.

The final case is as follows: Let B(k) denote the open ball in Rn centered at the

origin and of radius k. Let S(k) = S(k)− S(k − 1) for k = 1, 2, · · · . Let fk denote

the function f restricted to the set S(k). By our version of Lusin’s theorem there

exists a closed subset Ek of S(k) and a continuous real valued function gk on Rn

such that gk = fk on Ek and µ(S(k)− Ek) <
ϵ
2k
.

Consider a pair of sets Ek and Ek+1. These sets are compact and disjoint and so

the distance between their boundaries is positive. Define the real valued function

hk : Rn to take the value t, gk(xk) + (1 − t)gk+1(xk+1) at any point that can

be expressed as txk + (1 − t)xk+1 where xk is a boundary point of Ek, xk+1 is a

boundary point of Ek+1, and t is a number in the unit interval.

Define the function g : Rn → R by saying that f(x) = gk(x) whenever x belongs

to S(k) and f(x) = hk(x) whenever x can be expressed as txk + (1− t)xk+1 where

xk is a boundary point of Ek, xk+1 is a boundary point of Ek+1, and t is a number

in the unit interval.

This function is clearly continuous. The set of points at which f differs from g,

that is , the set {x ∈ Rn | f(x) ̸= g(x)}, must belong to the disjoint union of sets⋃∞
k=1(B(k) − Ek). So by the monotonicity and countable additivity of Lebesgue

measure,

µ({x ∈ Rn | f(x) ̸= g(x)}) ≤ µ

( ∞⋃
k=1

(B(k)− Ek)

)
=

∞∑
k=1

ϵ

2k
= ϵ.

QED
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12. THE LEBESGUE INTEGRAL

We have before given a definition of the Lebesgue integral. But that was only to

motivate how to measure subsets of Rn. Let’s give a proper definition. In fact let’s

define the Lebesgue integral axiomatically. First, let E be a measurable subset of

Rn that has finite measure. Here are four properties that we want the integral to

satisfy.

(1) The integral over E of the function that takes a value of 1 on some subset S

of E and zero elsewhere is the measure of S. That is
∫
E
χS = µ(S).

(2) The integral is additive. If g is a measurable function and f is a measurable

function defined on E, then the integral over E of g + f is the integral over E of g

plus the integral over E of f . That is,
∫
E
(g + f) =

∫
E
g +

∫
E
f .

(3) The integral is linear. If f is a measurable function defined on E and λ is a

real number, then the integral over E of λ times f is equal to λ times the integral

over E of f . That is,
∫
E
λf = λ

∫
E
f .

(4) The integral satisfies bounded convergence. If f1, f2, ... is a sequence of

measurable functions defined on E that converges to a function f and there exists

a number N such that | f1 |≤ N, | f2 |≤ N, ..., then the limit of the numbers∫
E
f1,
∫
E
f2, ... is equal to the integral over E of f . That is, limn

∫
E
fn =

∫
E
limn fn.

Our motivation for defining the Lebesgue integral was to prove theorems for when

we could interchange the limit and integral operators. The bounded convergence

property is such a theorem. Note though that we have assumed that the set E has

finite measure.

A useful result that we will use to define the Lebesgue integral is that if f is

a nonnegative, bounded, and measurable function defined on a subset E of Rn

of finite measure, then the integral over E of f is equal to the n + 1-dimensional

Lebesgue measure of the area under the graph of f . That is,∫
E

f = µn+1({(x, y) ∈ E ×R | 0 ≤ y ≤ f(x)}).

We can prove this using the bounded convergence property and the result that any

nonnegative, bounded, and measurable function is the limit of simple functions.

We will define the integral of a nonnegative and measurable function by the

n+ 1-dimensional Lebesgue measure of the area under its graph.

We will say that a nonnegative and measurable function f is integrable if its

integral is finite.

We may as well define the integral of a measurable and nonnegative function f

defined on a set E by the supremum of the integrals of all measurable functions

defined on subsets E′ of E with finite measure that are nonnegative and bounded.
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We can also prove a general version of the dominated convergence property for

when our function is defined on a set of possibly infinite measure. Get rid of

the condition that E is a set of finite measure. Bound sequence by an integrable

function g.

13. AXIOMS FOR THE LEBESGUE INTEGRAL

We want to construct a function
∫

called the Lebesgue integral from the set

of measurable functions to [0,∞]. We would like this function to agree with the

Riemann integral whenever its argument is a Riemann integrable function. We

would also like to know where the Lebesgue integral is continuous. That is, what

measurable functions f have the property that the sequence
∫
f1,
∫
f2, ... converges

to
∫
f whenever f1, f2, ... is a sequence of measurable functions converging to f .

Here is a list of some properties we would like the Lebesgue integral to have:

(1) It is additive. If f and g are measurable functions then the integral of f + g

is equal to the integral of f plus the integral of g. That is,∫
(f + g) =

∫
f +

∫
g.

(2) It is linear. If f is a measurable function and λ is a positive real number

then the integral of λf is equal to λ times the integral of f . That is,∫
λf = λ

∫
f.

(3) If S is a measurable set then the integral of the characteristic function χS is

the Lebesgue measure of S. That is,∫
χS = µ(S).

(4) Bounded convergence theorem. If f1, f2, ... is a sequence of uniformly bounded

measurable functions converging pointwise to some function f then the sequence∫
f1,
∫
f2, ... converges to

∫
f.

Let us first restrict the domain of the function
∫

to simple functions that are

positive on a set of finite measure.

It will turn out that demanding the above four properties for such functions

defines the function
∫
.

It also defines the function
∫
on the set of all measurable functions because our

definition of the integral of an arbitrary measurable function will be determined by

the limit of simple functions.

It will turn out that this function satisfies the four desired properties on the set

of all measurable functions.
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Claim 1: Let E be a measurable subset of Rn with finite measure. The unique

real valued function
∫
on the set of simple functions on E that satisfies conditions

(1)-(3) is defined by∫
f = c1µ(E1) + c2µ(E2) + ...+ cmµ(Em)

for any simple function f : E → R.

Proof: The formula follows from condition (1), (2), and (3). That is condition

(1) implies that
∫
f is equal to the sum of the terms

∫
ciχEi

from i = 1 to i = m.

Condition (2) implies that each of the integrals
∫
ciχEi

can be written as ci
∫
χEi

.

Condition (3) implies that each of the terms ci
∫
χEi

can be written as ciµ(Ei). We

also need to check that condition (4) holds. So let f1, f2, ... be a sequence of simple

functions converging to f .

Now let’s show this formula satisfies the axioms. It is clear that conditions (2)

and (3) hold using this formula. Let’s show that condition (1) holds. Let f and g

be simple functions on E. Then

f = c1χE1
+ ...+ cmχEm

and g = b1χS1
+ ...+ bkχSk

.

where the sets E1, ..., Em are pairwise disjoint and measurable with union equal to

E, and the sets S1, ..., Sk are pairwise disjoint and measurable with union equal to

E. The function f + g is a simple function also. Let Eij = Ei ∩ Sj for i = 1, ...,m

and j = 1, ..., k. These sets are pairwise disjoint and measurable and their union

is equal to E. I claim that the simple function
∑m

i=1

∑k
j=1(ci + bj)χEij is equal to

f + g. Consider a point x in E. This point is in exactly one Ei and exactly one Sj

and so f + g takes a value of ci + bj on this point which is the same value as the

function I proposed takes at the point x. Applying the formula for the integral of

a simple function which we derived in this proof we get that∫ m∑
i=1

k∑
j=1

(ci + bj)χEij =

m∑
i=1

k∑
j=1

(ci + bj)µ(Eij).

We also have that∫
f +

∫
g = c1µ(E1) + ...+ cmµ(Em) + b1µ(S1) + ...+ bkµ(Sk).

The right hand side of this expression can be written as

m∑
i=1

k∑
j=1

ciµ(Eij) +

m∑
i=1

k∑
j=1

bjµ(Eij)

which equal
∑m

i=1

∑k
j=1(ci + bj)µ(Eij). QED

Claim 2: Let E be a measurable subset of Rn with finite measure. The unique

real valued function
∫
on the set of nonnegative bounded measurable functions on
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E that satisfies conditions (1)-(4) is defined by∫
f = sup

{∫
g | g ≤ f and g a simple function

}
.

To prove this let’s first prove a weaker condition

I’ll prove this next time.

Recall the axioms we want the Lebesgue integral so satisfy:

(1) It is additive. If f and g are measurable functions then the integral of f + g

is equal to the integral of f plus the integral of g. That is,∫
(f + g) =

∫
f +

∫
g.

(2) It is linear. If f is a measurable function and λ is a positive real number

then the integral of λf is equal to λ times the integral of f . That is,∫
λf = λ

∫
f.

(3) If S is a measurable set then the integral of the characteristic function χS is

the Lebesgue measure of S. That is,∫
χS = µ(S).

(4) Bounded convergence theorem. If f1, f2, ... is a sequence of uniformly bounded

measurable functions converging pointwise to some function f then the sequence∫
f1,
∫
f2, ... converges to

∫
f .

Claim 2: Let E be a measurable subset ofRn that has finite measure. The unique

real valued function
∫

on the set of bounded nonnegative measurable functions is

given by ∫
f = sup

{∫
g | g ≤ f where g is a simple function

}
Fist, a lemma.

Lemma 1: If g and h are simple functions on Rn such that g ≤ h, then
∫
g ≤

∫
h.

Proof: Since g is a simple function it can be expressed as

h(x) = a1χE1(x) + ...+ anχEn(x)

where the E1, ..., En are pairwise disjoint measurable subsets of Rn. Since h is

a simple function it can be expressed as h(x) = b1χF1(x) + ... + bnχFn(x) where

the F1, ..., Fn are pairwise disjoint measurable subsets of Rn. Let G1, ..., Gm be

the collection of pairwise intersections of the sets E1, ..., En, F1, ..., Fn. There are

numbers c1, ..., cm, d1, ..., dn such that

h(x) =

m∑
i=1

ciχGi
and g(x) =

n∑
i=1

diχGi
.



28 MEASURE, INTEGRATION, AND BANACH SPACES

SInce g ≤ h we have that ci ≤ di for each i. Then∫
g =

m∑
i=1

ciµ(Gi) ≤
m∑
i=1

diµ(Gi) ≤
∫
h.

QED

Definition: Let

t− = sup

{∫
g | g ≤ f where g is a simple function

}
and

t+ = inf

{∫
h | f ≤ h where h is a simple function

}
.

Second, another lemma:

Lemma 2: t− = t+.

Proof: By Lemma 1, t− ≤ t+. Define the function h on Rn by

h(x) =
i+ 1

n
whenever

i

n
≤ f(x) ≤ i+ 1

n
.

Define the function g on Rn by

g(x) =
i

n
whenever

i

n
≤ f(x) ≤ i+ 1

n
.

Then g and h are simple functions such that g ≤ f and f ≤ h. Then

t+ − t− ≤
∫
h−

∫
g =

∫
h− g =

µ(E)

n
.

Since this can be made as small as we like this shows the reverse inequality, that

t+ ≤ t−.

QED

Third, anther lemma

Lemma 3: If we let
∫
f = t− for each bounded and nonnegative function f

on Rn, then
∫

satisfies condition 4. That is, if f1, f2, ... is a uniformly bounded

sequence of functions converging pointwise to f then the sequence
∫
f1,
∫
f2, ... of

numbers converges to
∫
f .

Proof: Let k be an integer. By Egorov’s theorem there exists a subset Ek of E

on which f1, f2, ... converges uniformly to f and such that µ(E−Ek) <
1
k . We have

that ∫
f =

∫
χEk

f +

∫
χE−Ek

f

so that

|
∫
f −

∫
χEk

f |≤ µ(E)

k
.

Since the sequence of functions f1, f2, ... converges uniformly to the function f on Ek

there exists an integer m such that | f(x)−fn(x) |≤ 1
k whenever x ∈ Ekandn ≥ m.
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This implies that for n ≥ m we have

|
∫
χEk

f −
∫
χEk

fn |≤ µ(E)

k
.

Then

∫
f −

∫
fn =

(∫
f −

∫
χEk

f

)
+

(∫
χEk

f −
∫
χEk

fn

)
+

(∫
χEk

fn −
∫
fn

)
so that for n ≥ m

|
∫
f −

∫
fn |≤ µ(E)

k
+
µ(E)

k
+
M

k

where M is the bound for the sequence f1, f2, .... The right hand side of this

expression can be made arbitrarily small by choosing k big enough. This implies

that the sequence
∫
f1,
∫
f2, ... of numbers converges to

∫
f .

QED

Now let’s prove the claim.

Proof of Claim 2: The formula∫
f = sup{

∫
g | g ≤ f where g is a simple function}

(i.e.
∫
f = t−)is the only possibility because f is equal to the limit of the functions

gn defined by

gn(x) =
i

n
whenever

i

n
≤ f(x) ≤ i+ 1

n
and the limit of the sequence

∫
g1,
∫
g2, ... is equal to t−. So by condition 4

∫
f = t−.

If the four conditions hold for this choice of
∫

then we have proved claim 2. Let’s

check each of them.

Condition 4: We showed in Lemma 3 that condition 4 holds.

Condition 2:∫
λf = sup{

∫
λg | g ≤ f where g is a simple function}

= sup{λ
∫
g | g ≤ f where g is a simple function}

= λ sup{
∫
g | g ≤ f where g is a simple function} = λ

∫
f.

Condition 3: Obviously
∫
χE = µ(E).

Condition 1: Let fn be the simple function defined by fn(x) = i
n whenever

i
n ≤ f(x) ≤ i+1

n . Let gn be the simple function defined by gn(x) =
i
n whenever

i

n
≤ g(x) ≤ i+ 1

n
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. Then the sequence f1, f2, ... is uniformly bounded because g is bounded and con-

verges pointwise to f and the sequence of functions g1, g2, ... is uniformly bounded

because f is bounded and converges pointwise to f . Then fn + gn is a uniformly

bounded sequence that converges pointwise to f + g. By condition 4 and the con-

tinuity of addition we have∫
f + g = lim

n

∫
fn + gn = lim

n

∫
fn + lim

n

∫
gn =

∫
f +

∫
g.

QED.

We have shown that the unique function
∫

from the set of functions (that are

nonnegative, bounded, and measurable and take positive values on a set of finite

measure) to the real numbers satisfying our four conditions is given by the equation∫
f = sup

{∫
g | g ≤ f where g is a simple function

}
.

Now we would like to enlarge the domain of our function
∫
to the set of functions

that are nonnegative and measurable. That is, we are getting rid of the restriction

of boundedness and being positive only on a set of finite measure.

One way to proceed is to continue to work with the definition
∫

given above.

But it will be more useful to define
∫
f to be the Lebesgue integral of the area

under the graph of f . That is,∫
f = µ(

{
(x, y) ∈ Rn+1 | 0 ≤ y ≤ f(x)}

)
.

It turns out that this definition of
∫

agrees with the definition of
∫
f as sup{

∫
g |

g ≤ f, g simple} when f is bounded and positive only on a set of finite measure.

We can show this by showing that this definition satisfies the conditions 1-4 for

functions f that are bounded and positive only on a set of finite measure. We can

also show it directly as follows.

Lemma 1: Let f : Rn → R be a bounded, nonnegative, measurable function

that is positive only on a set of finite measure. Then

sup

{∫
g | g ≤ f where g is a simple function

}
= µ(

{
(x, y) ∈ Rn+1 | 0 ≤ y ≤ f(x)}

)
Proof: Suppose we could prove the result when f is a simple function. Then if

f is not a simple function we can define the function fn by fn(x) = i
n whenever

i
n ≤ f(x) ≤ i+1

n . This is a sequence of simple functions that is uniformly bounded

and converges to f . So by condition 4 we know that
∫
f = limn

∫
fn. By our

knowledge that the result holds for simple function we have that the right hand

side of this is equal to limn µ({(x, y) ∈ Rn+1 | 0 ≤ y ≤ fn(x)}) and by continuity of

measure we have that this is equal to µ({(x, y) ∈ Rn+1 | 0 ≤ y ≤ f(x)}), the thing
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we want it to be equal to. So let’s suppose that f is a simple function. Because

f is a simple function we can write f = c1χE1
+ c2χE2

+ ... + cnχEn
. We have

that
∫
f = c1µ(E1) + c2µ(E2) + cnµ(En). We can write {(x, y) ∈ Rn+1 | 0 ≤

f(x) ≤ y} as the disjoint union of the sets Ei ∪ [0, ci] and so its measure is also

c1µ(E1) + c2µ(E2) + ...+ cnµ(En).

QED

Let’s make this out new definition of the integral.

Definition 1: Let the Lebesgue integral be the function
∫

from the set of non-

negative and measurable functions to [0,∞] defined by∫
f = µ({(x, y) ∈ Rn+1 | 0 ≤ y ≤ f(x)}).

This definition says that the Lebesgue integral of a nonnegative and measurable

function is the area under its graph. For bounded functions that are positive only on

a set of finite measure that area is finite. The area may be infinite if we relax either

of these assumptions. For example consider he function f : [0, 1] → [0,∞] defined

by f(x) = 1
x . The area under the graph of this function is limx→0 − ln(x) = ∞.

This function is positive only on a set of finite measure but it is not bounded. Now

consider the function f : [0, 1] → [0,∞] defined by f(x) = 1√
x
. The area under

the graph of this function is 2. This function is not bounded but it still has a

finite Lebesgue integral. Now consider the function f : (−∞, 0) → [0, 1] defined

by f(x) = ex. The area under the graph of this function is 1 and this function is

positive on a set of infinite measure. Clearly there are also nonnegative measurable

functions that are positive on a set of infinite measure and the area under their

graphs is infinite.

It turns out that for this more general definition of the Lebesgue integral our

four conditions will continue to hold. Note that it is not much to say that the

fourth condition will hold because if f1, f2, ... is a uniformly bounded sequence of

measurable functions converging pointwise to a function f then it must be that f

is bounded. The thing we have to check for our new definition of the Lebesgue

integral is that it might be that the sequence of functions converges to a function

that is positive on a set with infinite measure.

Claim 1: The Lebesgue integral satisfies conditions 1-3.

Lemma 1: The Lebesgue integral satisfies condition 4: If f1 ≤ f2 ≤ ... is a

sequence of functions converging to a nonnegative measurable function f , then
∫
f

is the limit of the sequence
∫
f1,
∫
f2, ....

Proof: Let Si = {(x, y) ∈ Rn+1 | 0 ≤ y ≤ fi(x)} and S = {(x, y) ∈ Rn+1 |
0 ≤ y ≤ f(x)}. The sequence S1, S2, ... is an increasing sequence of sets. By the

continuity of Lebesgue measure limn µ(Sn) = µ(S). That is, lim
∫
fn =

∫
f .

QED
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This seems more general than condition 4 in that the sequence of functions does

not need to be uniformly bounded. However it is less general in that the sequence

of functions needs to be nondecreasing.

Lemma 2: The Lebesgue integral satisfies condition 2. That is, if λ is a positive

real number then
∫
λf = λ

∫
f .

Proof: We have proved previously that this holds when f is also bounded and

only positive on a set of finite measure. Consider the function fi defined by fi(x) =

f(x) if x ∈ [−i, i] and f(x) ≤ i, fi(x) = 0 if x ̸∈ [−i, i], and fi(x) = i if x ∈ [−i, i]
and f(x) > i. Each function fi is a nonnegative, bounded, measurable function,

that is positive only on a set of finite measure – so we know that the lemma holds

for each fi. We also have that f1 ≤ f2 ≤ ... is a nondecreasing sequence of functions

that converges to f . By Lemma 1 we have that
∫
fi converges to

∫
f . Therefore

by continuity of multiplication∫
λf = lim

∫
λfi = limλ

∫
fi = λ

∫
f.

QED

Lemma 3: The Lebesgue integral satisfies condition 3. That is, if S is a measur-

able subset of Rn, then
∫
χS = µ(S).

Proof: It turns out that if E is a measurable subset of Rn and E′ is a measurable

subset of Rm then µn+m(E × E′) = µn(E)× µ(E′). This fact is a problem shown

on one of the problem sets for this course. Applying this result gives:∫
χS = µn+1(S × [0, 1]) = µn(S)µ1([0, 1]) = µn(S).

QED

Lemma 4: The Lebesgue integral satisfies condition 1. That is, if f and g are

nonnegative and measurable functions, then
∫
f + g =

∫
f +

∫
g.

Proof: We know that this is true when both f and g are nonnegative and positive

only on a set of finite measure. Consider the function fi defined by fi(x) = f(x)

if x ∈ [−i, i] and f(x) ≤ i, fi(x) = 0 if x ̸∈ [−i, i], and fi(x) = i if x ∈ [−i, i] and
f(x) > i. Consider the function gi defined by gi(x) = g(x) if x ∈ [−i, i] and g(x) ≤ i,

gi(x) = 0 if x ̸∈ [−i, i], and gi(x) = i if x ∈ [−i, i] and g(x) > i. Each fi, gi, and

fi + gi are nonnegative and positive only on a set of finite measure. The sequence

f1, f2, ... is nondecreasing and converges pointwise to f . The sequence g1, g2, ... is

nondecreasing and converges pointwise to g. The sequence f1 + g1, f2 + g2, ... is

nondecreasing and converges pointwise to f + g. Therefore, by Lemma 1 and the

continuity of measure∫
f + g = lim

∫
fi + gi = lim

∫
fi + lim

∫
gi =

∫
f +

∫
g.
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QED.

That’s nice. Now we know that our definition of the Lebesgue integral is the

unique definition for measurable functions that are nonnegative, bounded, and pos-

itive only on a set of finite measure that satisfies conditions 1-4 and we also know

that it satisfies conditions 1-3 and a variant of condition 4 on the set of measurable

nonnegative functions.

Next time we’ll define the integral for all measurable functions. You can probably

guess the correct definition.

Let f : Rn → R be a measurable function. What is the integral of f? We know

how to integrate nonnegative measurable functions and we know that the integral

for nonnegative functions is additive and linear. So let’s split up f in the following

way. Define f+ by f+(x) = f(x) if f(x) > 0 and f(x) = 0 otherwise. Define f− by

f−(x) = −f(x) if f(x) < 0 and f(x) = 0 otherwise. Then f = f+ + (−f−). Then

using the properties of the Lebesgue integral we have that∫
f =

∫
f+ −

∫
f−.

That is, we already knew how to integrate measurable functions. We just did not

know it. There is one issue with this definition what if we get ∞−∞ as
∫
f? That

is, suppose the function we were trying to integrate was sin(x). Our integral would

then be the sum of infinitely many ones and infinitely many negative ones. This

can be made to sum to any integer. So we would like to rule out this case. We will

do so with the following definition:

Definition: Let f be a measurable function. The function f is called integrable

if
∫
| f | is finite.

Note that when a function is integrable then both
∫
f+and

∫
f− are finite so we

won’t get into the problem of having to subtract infinity from infinity. Also note

that some nonnegative measurable functions are not integrable.

We will sometimes want to restrict ourselves to integrating integrable functions.

Do the properties we want the Lebesgue integral to satisfy hold for these functions?

Lemma 1: The Lebesgue integral is linear (satisfies condition 2) for integrable

functions. That is, if λ > 0 and f is a measurable function then
∫
λf = λ

∫
f .

Proof: We have∫
λf =

∫
(λf)+ −

∫
(λf)− = λ(

∫
f+ −

∫
f−λ

∫
f.

This can be generalised so that λ is any real number. It is clearly true if λ = 0.

If λ < 0 then (λf)+ = −λf−and(λf)− = −λf+ and we get the same result.

QED
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Lemma 2: The Lebesgue integral satisfies condition 3 for integrable functions.

That is, if S is a measurable set then
∫
χS = µ(S).

Proof: χS is a nonnegative measurable function and we showed this property

before for nonnegative measurable functions.

QED

Lemma 3: The Lebesgue integral satisfies condition 4 for integrable functions.

That is, if f1, f2, ... is a sequence of measurable functions that is uniformly bounded

converging to a function f then
∫
f is the limit of

∫
f1,
∫
f2, ....

Proof: The sequence (f1)+, (f2)+, ... is a sequence of nonnegative measurable

functions that is uniformly bounded. The sequence (f1)−, (f2)−, ... is also a se-

quence of nonnegative measurable functions that is uniformly bounded. We know

that condition 4 holds for nonnegative measurable functions. Therefore, since ad-

dition is continuous,

lim

∫
fn = lim

∫
(fn)+ − lim

∫
(fn)− =

∫
f+ −

∫
f− =

∫
f.

QED

Lemma 4: Let f be a nonnegative measurable function. Let E and E′ be disjoint

measurable sets. Then ∫
χE∪E′f =

∫
χEf +

∫
χE′f.

Proof: Because E and E′ are disjoint we have that χE∪E′ = χE +χE′ . Since we

have proved additivity for nonnegative functions we have that∫
χE∪E′f =

∫
(χE + χE′)f =

∫
χEf +

∫
χE′f.

QED

Lemma 5: The Lebesgue integral satisfies condition 1 (it is additive). If f and g

are integrable functions then
∫
f + g =

∫
f +

∫
g.

Proof: We can split up the domain of f + g into four different regions. Let E1

denote the points where both f and g are positive. Let E2 denote the points where

both f and g are negative. Let E3 denote the points not in E1 or E2 where f + g

is nonnegative. Let E4 denote the points not in E1 or E2 where f + g is negative.

By Lemma 4
∫
f + g =

∑4
i=1

∫
χEi

(f + g). If we can prove for each i = 1, 2, 3, 4

that
∫
χEi

(f + g) =
∫
χEi

f +
∫
χEi

g) then
∑4

i=1

∫
χEi

(f + g) can be written as∑4
i=1

∫
χEi

f +
∫
χEi

g) =
∫
f +

∫
g so we will be done.

We already proved this for i=1 because then both f and g are nonnegative. For

i = 1 (i.e. both f and gare nonpositive) we can have that
∫
f+g = −

∫
(−f)+(−g) =∫

f +
∫
g. Now consider i = 3. The set E3 is the union of two regions: the set of

points where f(x) is nonnegative and larger than −g(x) (because g(x) is necessarily
negative, otherwise his point x would belong to E1) and the se of points where
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g(x) is nonnegative and larger than −f(x). For the first of these regions we then

have that f + g = f − (−g) where both f and −g are nonnegative functions. So∫
(−g)+

∫
f + g =

∫
f which implies that

∫
f −

∫
(−g) =

∫
f + g. By Lemma 1 the

left hand side of this is
∫
f +

∫
g. We can do a similar trick on the other region.

Now consider i = 4. The set E4 is the union of two regions also: the set of points

where f(x) is nonnegative and smaller than −g(x) and the set of points where g(x)

is nonnegative and smaller than −f(x). For the first of these regions we have that

(−f) is a nonpositive function and so on this region
∫
(−f) +

∫
f + g =

∫
g. This

implies that
∫
f + g =

∫
g −

∫
(−f). By Lemma 1 the right hand side of this

expression is equal to
∫
f +

∫
g. A similar argument works for the other region.

QED

We now have the following.

Claim 1: The Lebesgue integral on the set of integrable functions satisfies con-

ditions 1-4.

Proof: Lemma 1,2,3,5.

QED

We have achieved our goal of defining a new integral. Our definition is: if f is

a nonnegative measurable function the
∫
f = µ({(x, y ∈ Rn+1 | 0 ≤ y ≤ f(x))}).

For an integrable function
∫
f =

∫
f+ −

∫
f−. This is the unique definition of the

integral that satisfies conditions 1-4.

14. LEBESGUE’S DOMINATED CONVERGENCE THEOREM

We can think of the Lebesgue integral as a function from the set of integrable

functions to the real numbers. The integral of any nonnegative measurable function

is µ({(x, y) ∈ Rn+1 | 0 ≤ y ≤ f(x)}) and the integral of any integrable function f

is defined as
∫
f =

∫
f+ −

∫
f−. This is the only function on the set of integrable

functions that satisfies our four conditions. If you recall one of our motivations for

defining the Lebesgue integral was to find conditions when the integral and limit

operators could be interchanged. Condition 4 gave us one rule for this: if f1, f2, ...

is a sequence of uniformly bounded measurable functions (defined on a set of finite

measure) converging pointwise to a function f , then lim
∫
fn =

∫
f . This is called

the bounded convergence theorem. The hypothesis of this result can be relaxed

to that the sequence of functions f1, f2, ... need not be uniformly bounded by a

number but can instead be uniformly bounded by an integrable function. This is

called Lebesgue’s Dominated Convergence Theorem.

Lebesgue’s Dominated Convergence Theorem: Let f1, f2, ... be a sequence of

measurable functions converging pointwise to a function f . If g is an integrable

function such that | fn |≤ g for all n, then f is integrable and lim
∫
fn =

∫
f.
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Proof: We may assume that g is nonnegative (if not just use its absolute value).

We can also assume that g is positive because each fi is zero when g is zero. Let’s

also assume that the support of g is E. We have | f |≤ g. By the monotonicity of the

integral this implies that f is integrable. Likewise, each fi is integrable. Consider

the set

Sn = {x ∈ Rn | 1
n
≤ g(x) ≤ n}.

The sequence of functions f1, f2, ... is uniformly bounded on this set. What is the

measure of Sn? We have that 1
nχSn

≤ g. This implies that µ(Sn) ≤ n
∫
g and

this is finite because g is integrable. The bounded convergence theorem can now

be applied so that for each n limi

∫
χSn

fi =
∫
χSn

f.

Let Tn denote the set E − Sn. Notice that
∫
fi =

∫
χSn

fi +
∫
χTn

fi. Therefore

|
∫
f −

∫
fi | is no more than

|
∫
χSnf −

∫
χSnfi | + |

∫
χTnf | + |

∫
χTnfi |

Note that T1, T2, ... is a decreasing sequence of sets such that
⋂

n≥1 Tn = ∅. Since we
have assumed that g is positive there is some n such that x in Tn implies g(x) ≥ n.

For this n we have nµ(Tn) ≤
∫
g which is finite. Therefore µ(Tn) is finite. By the

continuity of measure limµ(Tn) = 0. Let ϵ > 0. Then there exists an integer m

such that n ≥ m implies for each i that |
∫
χTn

f −
∫
χTn

fi |≤ ϵ
2 . For this m there

exists im such that i ≥ im implies |
∫
χSn

f −
∫
χSn

fi |≤ ϵ
2 .

QED

15. THE LEBESGUE SPACE

Let E ⊆ Rn be a measurable set. Define the Lebesgue space on E as the set

L1(E) = {f : E → R | f is integrable} mod functions that are the same almost everywhere.

Recall the definition of an integrable function: the function f : E → R is integrable

if it is measurable and
∫
| f |<∞. If f is an integrable function then we think of it

as an element of L1(E) but what we really mean is that the class of functions that

are equal to f almost everywhere is an element of L1(E).

Notice that L1(E) is a vector space: the sum of two integrable functions is

integrable and a number multiplied by an integrable function is integrable. The

Lebesgue integral is the unique real valued function on L1(E) satisfying our four ax-

ioms (additivity, linearity, the normalisation condition, and bounded convergence).

It turns out that L1(E) does not have a finite basis. That is, it is an infinite di-

mensional vector space. We will want to talk about the basis of L1(E). But to do

this we need to be able to define infinite sums of elements of L1(E)and to do this

we need a notion of convergence. That is, we need to give L1(E) a topology.
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Definition: A sequence f1, f2, ...inL
1(E) converges to a function f in L1(E)if the

sequence
∫
| f1 − f |,

∫
| f2 − f |, ... converges to zero.

If f and g are integrable functions then let d(f, g) denote
∫
| f − g |. There is a

notion called a metric space which consists of a set X and a function d from X×X
to the nonnegative real numbers. The idea is that d(x, y) measures the distance

between the points x and y in X. To be a metric space the function d must satisfy

the following properties. (1) The distance between points x and y is the same as

the distance between y and x, that is, for all x, y in X we have d(x, y) = d(y, x).

(2) The distance between two points if zero if and only if the two points are equal

to one another, that is, d(x, y) = 0 if and only if x = y. (3) The distance from a

point x to a point z is no more than the distance between x and a point y plus the

distance between a y and z, that is, d(x, z) ≤ d(x, y) + d(y, z). This last condition

is called ’the triangle inequality’ because of its relation to the idea that any side of

a triangle has length no more than the sum of the other two sides.

It turns out that the set L1(E) with the function d(f, g) =
∫
| f − g | is a metric

space. Let’s prove this. Condition (1) is true because | f − g |=| g − f | for all f

and g in L1(E). For condition (2) we have that if f = g, then d(f, g) = 0 because

the integral of the zero function is zero. It is possible to show that if the Lebesgue

integral of a function is zero then that function is zero almost everywhere. Thus if

d(f, g) = 0 then f − g is equal to 0 almost everywhere and so f is equal to g almost

everywhere. Note that her it is important that we think of elements of L1(E) as

the class of functions that are the same almost everywhere. For condition (3) let

f, g, and h belong to L1(E). Then | f − g |≤| f − h | + | h − g | and so my the

linearity and monotonicity of the Lebesgue integral we have that
∫
| f − g |≤

∫
|

f − h | +
∫

| h − g |, that is, d(f, g) ≤ d(f, h) + d(h, g). So, we have shown that

L1(E) with the function d(f, g) =
∫
| f − g | is a metric space.

Why do we care about showing this? Well, there is a theory for metric spaces.

Now that we know that L1(E) with the function d(f, g) =
∫

| f − g | is a metric

space we can apply to it this theory.

A notion that is related to a metric space is a normed vector space. A normed

space is a vector space V and a function ∥ · ∥ from V to the nonnegative real

numbers. The idea is given a point v in V that ∥v∥ is the length of the vector v. To

be a normed vector space the function ∥ · ∥ must satisfy the following properties.

(1) The length of a vector v is zero if and only if v is the zero vector, that is, for

all v in V we have ∥v∥ = 0 if and only if v = 0. (2) If α is a real number and v is a

vector in V , then the length of the vector αv is the absolute value of α multiplied

by the length of v, that is, for all α ∈ R and for all v ∈ V we have ∥αv∥ =| α | ∥v∥.
(3) The length of a vector v + w is no more than the length of the vector v plus
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the length of the vector w, that is, for all v, w in V we have ∥v + w∥ ≤ ∥v∥+ ∥w∥.
This last condition has the same intuition as the triangle inequality.

Notice that L1(E) with ∥f∥ =
∫
|f | is a normed vector space. From our knowl-

edge that L1(E) with the function d(f, g) =
∫

| f − g | is a metric space it is

clear that conditions (1) and (3) hold. For condition (2), let α be a real number

and let f be an element of L1(E). Because the Lebesgue integral is linear we have

∥αf∥ =
∫
|αf | = |α|

∫
|f | = |α|∥f∥. So L1(E) with ∥f∥ =

∫
|f | is a normed vector

space.

Again, why do we care? I think we care for a similar reason that we care that

L1(E) with the function d(f, g) =
∫
| f − g | is a metric space. That is, there is a

theory about normed vector spaces so by knowing that L1(E) with ∥f∥ =
∫
|f | is

a normed vector space we can apply this theory to it.

Also note that given a normed vector space V with the function ∥ · ∥ we get a

metric space by defining d(v, w) to be ∥v−w∥. Indeed, we have already shown this

to be the case for L1(E) with the norm ∥f∥ =
∫
|f |.

A desirable property of a normed vector space is that it is complete. That is,

there are no sequences v1, v2, ... that seem to be converging (in other words, are the

points eventually get arbitrarily close to one another) but there is no point in the

vector space that these points correspond to. For example the rational numbers

are not complete because there is a sequence of rational numbers that converges to

the square root of 2. We will call a normed vector space that is complete a Banach

space.

It turns out that L1(E) with the norm ∥f∥ =
∫
|f | is a Banach space. That is,

if f1, f2, ... is a sequence in L1(E) such that for each number ϵ > 0 there exists an

integer k > 0 such that n,m ≥ k implies that ∥fn − fm∥ ≤ ϵ (such a sequence is

called a Cauchy sequence), then there exists an element f of L1(E) such that the

sequence f1, f2, ... converges to f in the sense that lim ∥f − fn∥ = 0.

Theorem 1: The set L1(E) with the norm ∥f∥ =
∫
|f | is a Banach space.

To prove this theorem let’s first talk about the relationship between pointwise

convergence and convergence using the norm
∫
|f |. Let f1, f2, ... be a sequence in

L1(E) and let f be an element of L1(E). Here are two natural questions.

Question 1: If lim ∥fn − f∥ = 0, then what can we say about lim |fn(x)− f(x)|?
Question 2: If for each x in E we have lim |fn(x)− f(x)| = 0, then what can we

say about lim ∥fn − f∥?
Consider the following example. Let fn = χSn

where S1 = [0, 1], S2 = [0, 12 ],

S3 = [ 12 , 1], S4 = [0, 13 ], S5 = [13 ,
2
3 ], S6 = [ 23 , 1], and so on. This sequence does not

converge pointwise at any point x ∈ [0, 1]. But we do have that lim ∥fn − f∥ = 0

because
∫
|fn| = µ(Sn) and µ(Sn) converges to zero. This example shows that it is

not true that convergence in the L1(E) norm implies pointwise convergence.
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What about question 2. Consider this example. Let fn = χ[n,n+1]. The sequence

of functions f1, f2, ... converges pointwise to the zero function because for any x we

have that x is less than some integer m and so |fn(x)| = 0 for all n at least equal

to m. But we don’t have that f1, f2, ... converges to the zero function in the L1(E)

norm because
∫
|fn| = 1 for all n. This example shows that it is not true that

pointwise convergence implies convergence in L1(E).

It turns out that the following is true: a sequence x1, x2, ... converges to a point

x if and only if when y1 = x2 − x1, y2, x3 − x2, ... the sum y1 + y1 + ... converges to

x. A sum z1 + z2 + ... is said to converge absolutely if the sum of the norm of its

terms converges.

Definition: A sequence x1, x2, ... converges quickly if the sum y1 + y2 + ... where

y1 = x2 − x1, y2 = x3 − x2, ... converges absolutely.

Thus a sequence f1, f2, ... in L
1(E) converges quickly if the sum ∥f2−f1∥+∥f3−

f2∥+ ... converges.

It turns out a normed vector space is a Banach space if and only if each sequence

that converges quickly converges in the space.

How can we use this to prove that L1(E) is a Banach space?

Well, let f1, f2, ... be a Cauchy sequence in L1(E). Then we can find a subse-

quence of f1, f2, ... that converges quickly. To do this, let ki be the integer such that

n,m ≥ k1 implies ∥fn − fm∥ ≤ 1
2i , and do this for i = 1, 2, .... Then fk1 , fk2 , ... is

a subsequence that converges quickly. It can be shown that this implies that there

is a function f such that fk1 , fk2 , ... converges almost everywhere to f . It is then

possible to show that f1, f2, ... converges almost everywhere to f . Doing this will

show that L1(E) is a Banach space.

16. TONELLI AND FUBINI’S THEOREM

Given a measurable function f : Rm×Rn → R what is the relationship between∫
f(x, y)d(x, y),

∫ (∫
f(x, y)dx

)
dy, and

∫ (∫
f(x, y)dy

)
dx?

Let E be a measurable subset of Rm ×Rn. For each x ∈ RmletEx denote the

set {y ∈ Rn | (x, y) ∈ E}. Let’s try to understand the relationship between the

measure of E and the measure of the sets Ex.

Recall the definition of a measurable set: A set E ⊆ Rn is measurable if for all

sets F ⊆ Rn the outer measure of F is equal to the outer measure of the points that

are in both E and F plus the outer measure of the points that are in F but not in

E. It would be nice if each set Ex (or at least almost all) thought of as a subset of

Rn were measurable. Now define the function fE : Rn → [0,∞] by fE(x) = µ(Ex)

if Ex is measurable and fE(x) = 0 if Ex is not measurable. It would be nice if this

were a measurable function. It would also be nice if the integral of this function

was the measure of E, that is,
∫
fE = µ(E).



40 MEASURE, INTEGRATION, AND BANACH SPACES

Case 1) Let’s start by assuming that E ⊆ Rm ×Rn is an open box. Then E is

equal to the cartesian product of a box B1 ⊆ Rm and an open box B2 ⊆ Rn. That

is, E = B1 × B2. In this case Ex = B2 if x is in B1 and Ex = ∅ if x is not in B1.

We know that open sets are measurable so we know that Ex is a measurable set for

all x. We also have that the fE is a measurable function because fE = µ(Ex)χB1

and B1 is a measurable set. Finally, we have that∫
fE =

∫
µ(B2)χB1

= µ(B2)µ(B1) = µ(B1 ×B2).

Case 2) Now let’s assume that E is the union of two open boxes E1 and E2. That

is, E = E1 ∪E2 = (B1 ×B2)∪ (B3 ×B4) where B1, B3 are open boxes of Rm and

B2, B4 are open boxes of Rn. Then we have that Ex = E1
x ∪ E2

x which by Case 1

is the union of two measurable sets and is therefore measurable. Similarly,

fE = fE1 + fE2 − fE1∩E2 = µ(B2)χB1
+ µ(B4)χB3

− µ(B2 ∩B4)χB1∩B3

is a measurable function and∫
fE = µ(B2)µ(B1) + µ(B4)µ(B3)− µ(B2 ∩B4)µ(B1 ∩B3) = µ(E).

Continuing in this way we can show that the properties hold if E is the union of n

open boxes. Can we also show this result for the limit case? Putting this slightly

differently, given an open set E do the three properties

(1) The set Ex is measurable for almost every x, (2) The function fE : Rm →
[0,∞] is measurable, and (3) µ(E) =

∫
fE

hold. We can write E as the countable union of open boxes. Property (1) holds

because Ex is either the empty set or a finite or countable union of open boxes. Now

let Ek denote the union of the first k open boxes that E is made from. For each

x we have that E1,x, E2,x, ... is a nondecreasing sequence of sets whose measures

converge to the measure of µ(Ex). Therefore fE1
, fE2

, ... is a nondecreasing sequence

of measurable functions whose limit is f . We have previously shown that the limit

of measurable functions is also a measurable function. Therefore f is a measurable

function. By the continuity of measure we know that the sequence µ(E1), µ(E2), ...

converges to µ(E). Therefore we know that
∫
fE1

,
∫
fE2

, ... converges to µ(E). By

the monotone convergence theorem we also know that
∫
fE1

,
∫
fE2

, ... converges to∫
f . Therefore

∫
f = µ(E). So we have shown that the three properties hold when

E is any open set.

What can we say when E has measure zero? To say that E has measure zero

means that for each number ϵ > 0 there exists open boxes B1, B2, ... whose union

contains E and such that the sum of the volumes of these open boxes is no more than

ϵ. Let B1, B2, ... be such a sequence of open boxes for ϵ = 1
n . Let Fn = B1∪B2∪ ....

We know that the properties (1),(2), and (3) hold for F .
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We have that fE(x) = µ(Ex) ≤ µ(Fn,x) = fFn
(x). We also have that inf fFn

=

µ(Fn) ≤ 1
n . What is the measure of the set on which fFn

takes values more than
1
k . Call this set Sk. It must be that 1

k times the measure of this set is no more

than 1
n , that is, µ(Sk) ≤ k

n . For each k we can choose n to make this as small as we

like. Then we have that for each k the set on which fFn
takes a value larger than

1
k can be made as small as we like. Therefore the set on which fE takes a positive

value must have measure zero. This shows property (1) because any set that has

measure zero is measurable. It shows property (2) because the zero function in a

measurable function. And it shows property (3) because the integral of the zero

function is zero, the same as the measure of E. So we have shown that he three

properties hold when E is a set of zero measure.

Now let’s try to show the three properties are true when E is any measurable set.

We have shown previously that any measurable set can be written as the countable

intersection of open sets minus a set of measure zero. We have shown that the three

properties hold when E is an open set or a set with zero measure. We will use this.

Our first goal is to show that the three properties hold when E is the countable

intersection of open sets. Let’s also suppose that E is bounded. Because the finite

intersection of open sets is an open set we can think about our countable union of

open sets as a decreasing sequence of open sets U0 ⊆ U1 ⊆ .... We know the three

properties hold for each Ui. We also know that fE ≤ fUi for each i. And we know

that E = limi Ui and so Ex = limi Ui,x. This implies that Ex is measurable because

it is the countable intersection of measurable sets. Since E is bounded we know

that for large enough i the set Ui,x has finite measure. Therefore by the continuity

of measure we have that µ(Ui,x) converges to µ(Ex) for almost every x. That is,

fUi converges pointwise almost everywhere to fE . We have shown previously that

the pointwise limit of measurable functions is a measurable function. This shows

property (2), that fE is a measurable function. Finally, we have for large enough

i that Ui has finite measure and so fUi is an integrable function. Since for this i

we have fE ≤ fUi we may apply the dominated convergence theorem to get that

lim
∫
fUi =

∫
fE . The left hand side of this is limµ(Ui) and we have already shown

that this is µ(E). So we have shown property (3).

Now let’s suppose that E is the countable intersection of open sets minus a set

of measure zero. As before we can arrange for these open sets to be decreasing

so we have open sets U0 ⊆ U1 ⊆ ... and a set of measure zero E0 such that

E = (U0 ∩ U1 ∩ ...)−E0. Let’s assume again that E is bounded. Let’s also denote

by F the union U0 ∩ U1 ∩ .... We know that the three properties hold for F and

we also know that the three properties hold for E0 and also that fE0
is zero almost

everywhere. We have that Ex = Ui,x − E0,x which is measurable as the difference

of two measurable sets. We have that µ(Ex) = µ(Ui,x) because we have previously
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shown that Ex is a set of measure zero. We then have by the dominated convergence

theorem that µ(E) = µ(F ) and we know that µ(F ) = µ(F −E0). This shows that

the three properties hold when E is a bounded measurable set.

To show that the three properties hold when E is an arbitrary measurable set

you could consider E intersected with an open ball of radius n and call this set En.

The set En is a measurable set and the three properties hold for it. We then have

that Ex is the union E1,x ∪E2,x ∪ ... which is measurable as the countable union of

open sets. We also have that fE is the pointwise limit of the functions fE1
, fE2

, ...

and since these are measurable functions the limit function fE is a measurable

function. Finally, we can apply the monotone convergence theorem. The sequence

of functions fE1
≤ fE2

, ... is nondecreasing and converges to f . This implies that

lim
∫
fEn

=
∫
fE . The left hand side of this expression is µ(En) and we know that

µ(En) converges to µ(E). So we have shown that the three properties hold for an

arbitrary measurable set.

How can we apply this result. At the beginning of this email I asked the following

question: Given a measurable function f : Rm ×Rn → R what is the relationship

between
∫
f(x, y)d(x, y),

∫ (∫
f(x, y)dx

)
dy, and

∫ (∫
f(x, y)dy

)
dx?

First, let’s suppose that f is a nonnegative function. Then we have that∫
f = µ{(x, y, z) ∈ Rm ×Rn ×R | 0 ≤ z ≤ f(x, y)}

Let’s apply our result. Denote by E the set

{(x, y, z) ∈ Rm ×Rn ×R | 0 ≤ z ≤ f(x, y)}.

We have that Ex is the set

{(y, z) ∈ Rn ×R | 0 ≤ z ≤ f(x, y)}.

Our three properties say that Ex is measurable for almost every x, that fE is a

measurable function, and that µ(E) =
∫
fE . Let’s expand this last expression. The

left hand side is
∫
f(x, y, d(x, y). Since µ(Ex) is the integral

∫
f(x, y)dy we have

that the right hand side is
∫ (∫

f(x, y)dy
)
dx. That is,∫

f(x, y)d(x, y) =

∫ (∫
f(x, y)dy

)
dx

Likewise, we can apply this to show that∫
f(x, y)d(x, y) =

∫ (∫
f(x, y)dy

)
dx

too. The answer to our question is that they are all equal to one another. This

is called Tonelli’s theorem.
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What if f is an arbitrary measurable function. Well, in this case we can split

f up so that f = f+ − f−. In this case we need to avoid the case where both the

integral of both f+ and f− is infinity. Requiring that f be an integrable function is

more than enough for this. This is called Fubini’s theorem.

It gives us a way to iteratively compute the integral of a function whose domain

is a subset of Rn when n is more than 1.

17. CONVEX FUNCTIONS

Let E be a measurable subset of Rn. Consider the Lebesgue space L1(E).

Taking the dot product of two vectors tells you something about the angle be-

tween the vectors. We would like to know if given functions f, g in L1(E) whether

the product of these two functions is in L1(E). The reason we would like to know

this is because then we could consider the integral of fg and this would give us

some idea of the ”angle” between f and g.

One question we want the answer to is this. If f, g are integrable functions, then

is fg an integrable function. The following example shows that the answer is no.

Example: Let E = [0, 1] and let f be defined by f(x) = 1√
x
. Then f belongs

to L1(E) because
∫
|f | = 2

√
x|10 = 2. However the product of f with itself is not

integrable because
∫
|f2| = log(x)|10 = ∞.

Definition: A function f : E → R is square integrable if it is measurable and∫
f2 <∞.

Is it true that if a function is square integrable then it is integrable?

Consider this counterexample. The series 1 + 1
2 + 1

3 + ... diverges to infinity

but the series 1 + 1
4 + 1

9 + ... converges to π2

6 . This is a counterexample because

we can let E be the nonnegative real numbers and let f be the function given by

f(x) = 1
⌈x⌉ . Then we get that

∫
f = 1 + 1

2 + 1
3 + ... and

∫
f2 = 1 + 1

4 + 1
9 + ....

It is not possible to make such a counterexample when the measure of E is finite.

That is, when µ(E) < ∞, if f : E → R is a square integrable function, then f is

an integrable function.

Now let’s define some more spaces. Let’s denote by L2(E) the set of square inte-

grable functions on the set E and let’s define the norm for this space as
(∫

|f |2
) 1

2 .

In general we define the set Lp(E) to be the set of measurable functions on E such

that fp is an integrable function. We put the norm
(∫

|f |p
) 1

p on it. We need to

show hat these are norms. Before we do this let’s talk about convex functions.

Definition: Let ϕ : Rn → R. We say that ϕ is convex if for all x, y ∈ Rn and for

all λ ∈ [0, 1] we have that

ϕ(λy + (1− λ)x) ≤ λϕ(y) + (1− λ)ϕ(x).
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Intuitively, this is saying that the line segment connecting any two points on the

graph of the function of ϕ lies above the graph of ϕ.

It turns out that convex functions are continuous and that they are differentiable

almost everywhere. Our goal is to show these things.

In our definition for a convex function let y = x + h where h is some positive

number. Note that λ(x+ h) + (1− λ)x = x+ λh. Then we have that for a convex

function ϕϕ(x+ λh) ≤ λϕ(x+ h) + (1− λ)ϕ(x). Subtracting ϕ(x) from both sides

and dividing by λh gives

ϕ(x+ λh)− ϕ(x)

λh
≤ ϕ(x+ h) + ϕ(x)

h

. This inequality implies that for a convex function the slope of the line connecting

x and x+ h for h > 0 is nonincreasing as h gets smaller.

Let’s now show that for a convex function ϕ as h goes to zero from the right

the function f defined by f(h) = ϕ(x+h)+ϕ(x)
h converges to some number which we

will call d+ϕ(x). We have already shown that the function f(h) is nonincreasing.

This implies that the sequence of numbers f(1), f( 12 ), f(
1
3 )... is nonincreasing. If

we can show that this sequence is bounded below then we will have shown that

d+ϕ(x) exists (because any monotonic bounded sequence converges). To show this

consider x − h. Applying our definition of a convex function with λ = 1
2 gives

ϕ(x) ≤ 1
2ϕ(x− h) + 1

2ϕ(x+ h). It follows that ϕ(x)−ϕ(x−h)
h ≤ ϕ(x+h)−ϕ(x)

h .

That is, the slope of the line segment joining x − h and x is no more than the

slope of the line segment joining x and x+h. By the same logic as before we know

that the function g(h) = ϕ(x)−ϕ(x−h)
h is nondecreasing function of h. So by fixing

any h∗ ≤ 1 gives us ϕ(x)−ϕ(x−h)
h as a lower bound for f(1), f( 12 ), f(

1
3 ), ....

With the same sort of argument we can show that the sequence of numbers

g(1), g( 12 ), g(
1
3 ), ... converges. Let’s call this limit d−ϕ(x). Note also that since

g(h) ≤ f(h) for each h we have that d−ϕ(x) ≤ d+ϕ(x).

We call d−ϕ(x) the derivative at x from the left and we call d+ϕ(x) the deriv-

ative at x from the right. We have just shown that for a convex function both of

these derivatives exist and that the derivative from the left is no greater than the

derivative from the right. Note that these derivatives being equal means that the

function ϕ is differentiable at the point x. Note that for a convex function these

derivatives need not be equal. For example for the absolute value function at the

point x = 0 the derivative from the left if −1 and the derivative from the right is

1. It turns out that the set of points where a convex function is not differentiable

has measure zero.



MEASURE, INTEGRATION, AND BANACH SPACES 45

Now suppose we wanted to compare the derivative of the convex function ϕ at

two points x < y. By letting y = x+ h we know that

d−ϕ(x) ≤ d+ϕ(x) ≤ ϕ(y)− ϕ(x)

y − x
≤ d−ϕ(x) ≤ d+ϕ(x).

This shows that the functions d−ϕ and d+ϕ are nondecreasing functions. We will

prove later that a a differentiable function is convex if its derivative is nondecreasing.

Let’s first consider continuity. It turns out that a convex function is continuous.

Let’s prove this.

Claim 1: If ϕ : Rn → R is a convex function, then it is a continuous function.

Proof: Consider an interval [a, b] and let x and y belong to this interval such

that x < y. From before we have that d+ϕ(a) ≤ ϕ(y)−ϕ(x)
y−x ≤ d+ϕ(b). For C =

max(d+ϕ(a), d+ϕ(b)) this implies that |ϕ(y)−ϕ(x)| ≤ C|x−y|. This implies that ϕ

is continuous on the interval [a, b]. (A function that satisfies this condition is called

Lipschitz continuous). Repeating the argument for other intervals shows that the

function ϕ is continuous everywhere.

QED

Another theorem.

Claim 2: Let ϕ be a convex function. Suppose that for a point x in the domain

of ϕ there exists a number m such that d−(x) ≤ m ≤ d+(x). Then for all y in the

domain of ϕ we have that my + (ϕ(x) −mx) ≤ ϕ(y) This is saying that the line

through the point (x, ϕ(x)) with slope m lies below the graph of ϕ.

Proof: The inequality holds when x = y. Suppose that x < y. Rearranging the

inequality we would like to show and dividing by y − x gives

m ≤ ϕ(y)− ϕ(x)

y − x
.

We have shown previously that

d−ϕ(x) ≤ d+ϕ(x) ≤ ϕ(y)− ϕ(x)

y − x

so this inequality is true because by assumption d−(x) ≤ m ≤ d+(x). A similar

argument applies when y < x.

QED

The reason we introduced the notion of a convex function is to prove the following

theorem.

Theorem 1: (Jensen’s inequality) Let ϕ : R → R be a convex function and let

f : E → R be an integrable function. Then

ϕ

(∫
f

)
≤
∫
ϕ ◦ f.
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Proof: Choose a number m such that d−
(∫
f
)
≤ m ≤ d+

(∫
f
)
. By Claim 2 we

have that there exist numbers m and b so that mx+b ≤ ϕ(x) for all x with equality

for x =
∫
f . By the linearity and monotonicity of the Lebesgue integral we have

that

ϕ

(∫
f

)
= m

∫
f + b ≤

∫
ϕ ◦ f.

QED

Now let’s prove a criterion for deciding if a function is convex.

Claim 3: Suppose that ϕ : R → R is differentiable. If the derivative of ϕ is

nondecreasing, then ϕ is a convex function.

Proof: Let h > 0. We want to show that ϕ(x + λh) ≤ λϕ(x + h) + (1 −
λ)ϕ(x). By the Mean Value Theorem there exists a point x1 ∈ [x, x + λh] such

that ϕ(x+λh)−ϕ(x)
λh = ϕ′(x1). By the Mean Value Theorem there exists a point

x2 ∈ [x + λh, x + h] such that ϕ(x+h)−ϕ(x+λh)
(1−λ)h = ϕ′(x2). By hypothesis we have

that ϕ′(x1) ≤ ϕ′(x2). This implies that ϕ(x+ λh) ≤ λϕ(x+ h) + (1− λ)ϕ(x).

QED

Example: Consider the function f given by f(x) = x2. This function has a

nondecreasing derivative. By Claim 3 it is convex. More generally consider the

functions |x|p for p ≥ 1. Such a function has a nondecreasing derivative and so by

Claim 3 is convex.

Let’s now define Lebesgue spaces of order p.

Definition: Let p ≥ 1. Let E be a measurable subset of Rn. Define the Lebesgue

space of order p to be the set of functions

Lp(E) =

{
f : E → R|f measurable and

(∫
|f |p

) 1
p

<∞

}
modulo functions that are the same almost everywhere. Claim 4: If f, g belong to

Lp(E), then f + g belongs to Lp(E).

Proof: Since the absolute value raised to the power p defines a convex function

we have that

(∫
|f + g|p

) 1
p

= 2

(∫
|f + g

2
|p
) 1

p

≤ 2

(∫
|f
2
|p +

∫
|g
2
|p
) 1

p

= 2

(∫
|f
2
|p + |g

2
|p
) 1

p

<∞.

QED

Example: The function x 7→ ex is a convex function. This follows from claim

3 because this function’s first derivative is nondecreasing. So for example we have
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that for any real numbers a and b and any number λ ∈ [0, 1] that eλa+(1−λ)b ≤
λea + (1− λ)eb.

Theorem 2: (Young’s inequality) For any real numbers x and y and any integers

p, q > 1 such that 1
p +

1
q = 1 we have that xy ≤ 1

px
p+ 1

q y
q. Proof: Let λ = 1

p where

p > 1 and 1
q = (1 − λ). Let a = p log xandletb = q log(y). Then the convexity of

the exponential function (using the notation above) tells us that xy ≤ 1
px

p + 1
q y

q.

QED

Next time we will prove some more inequalities and relate them to Lebesgue

spaces.

18. MORE INEQUALITIES

Recall the definition of a Lebesgue space of order p: Let E be a measurable

subset of Rn. The Lebesgue space of order p is the set of measurable functions

f : E → R (modulo functions that are the same almost everywhere) such that the

expression
(∫

|f |p
) 1

p is finite . We denote this set of functions by Lp(E). The reason

we say ’modulo functions that are the same almost everywhere’ is that we want to

show that the Lebesgue space of order p with the function ∥ · ∥Lp : Lp(E) → R

defined by
(∫

|f |p
) 1

p is a normed vector space (and later a Banach space). In order

for the function ∥ · ∥Lp to be a norm we require that its value is zero if and only if

the function it is considering is the zero function. However, any function that is the

same almost everywhere to the zero function will also take a value of zero under

this function. We get around this by thinking of the elements of Lp(E) as the set

of functions that are almost everywhere the same. (This raises an interesting idea:

given two functions that are not the same almost everywhere it is impossible to

change one of the functions on a set of measure zero, then to change it again on

a set of measure zero, then again, and so on forever, to make it the same as the

other function.) We have previously shown that the Lebesgue space of order 1 is a

Banach space (and so also a normed vector space). What we would like to do now

is to show that this is true for Lebesgue spaces of order more than 1. Another thing

we would like to do is to figure out when the product of two functions in a Lebesgue

space of order p is also in that space. To do this we introduced the idea of a convex

function. The reason this will help us is that the function given by the expression

|x|p is convex for all p ≥ 1. Last time we developed the theory of convex function

and finished by proving an inequality called Young’s inequality (which follows from

our showing that the exponential function is a convex function).

Young’s inequality: For all real numbers x and y and all numbers p, q > 1 such

that 1
p + 1

q = 1 we have that xy ≤ 1
px

p + 1
qx

q.
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The way we proved this was to note that the exponential function is convex so

that for all real numbers a and b and all numbers λ in [0, 1] we have

eλa+(1−λ)b ≤ λea + (1− λ)eb

and then to make the substitution

λ =
1

p
, 1− λ =

1

q
, a = p log(x), b = q log(y).

A corollary of Young’s inequality is an inequality called Holder’s inequality.

Corollary 1: (Holder’s inequality) Let f : E → R and g : E → R be measurable

functions and let p, q ≥ 1 such that 1
p + 1

q = 1. Then∫
|fg| ≤

(∫
|f |p

) 1
p
(∫

|g|q
) 1

q

.

Proof: The inequality holds if either f or g takes the value of zero almost everywhere

because then fg will take a value of zero almost everywhere and so the left hand

side of the integral will be zero. It is clear that both sides of the inequality are

nonnegative numbers. So let’s assume neither f nor g takes the value zero almost

everywhere. In this case the inequality also holds if one of the integrals on the right

is infinite. So let’s now also assume that neither of the integrals on the right hand

side are infinite. That is, let’s assume that f belongs to the Lebesgue space of order

p on E and that g belongs to the Lebesgue space of order q on E. Now define the

functions f̂ by f̂ = f

(
∫
|f |p)

1
p

and ĝbyĝ = g

(
∫
|g|q)

1
q
. If we can show that

∫
f̂ ĝ ≤ 1

we will be done. Notice that Young’s inequality tells us that |f̂ ĝ| ≤ 1
p |f̂ |

p + 1
q |ĝ|

q.

Integrating this expression gives∫
f̂ ĝ ≤ 1

p

∫
|f̂ |p + 1

q

∫
|ĝ|q =

1

q
+

1

p
= 1.

QED

A special case of Holder’s inequality when p = 2 is called The Cauchy-Schwartz

Inequality. It get’s its own name because it comes up quite often.

Holder’s inequality tells us about when the product of two measurable functions

is an element of L1(E).

Now let’s prove an inequality called Minkowski’s Inequality that will help us

show that the function ∥ · ∥Lp on Lp(E) defined for f ∈ Lp(E) by the equation

∥f∥Lp =
(∫

|f |p
) 1

p is a norm. Last time we showed that a Lebesgue space of order

p is a vector space. Once we show this function is a norm we will know that the

Lebesgue space of order p is a normed vector space.

Minkowski’s inequality is a corollary of Holder’s inequality.
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Corollary 2: (Minkowski’s inequality): Let f, g ∈ Lp(E). Then

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp .

Proof: We have previously shown this for the case where p = 1 so assume p > 1.

Note that if the inequality holds when we replace f and g by |f | and |g| then it also

holds for f and g. This is because when we replace |f | and |g| by f and g we have

that the right hand side of the inequality is unchanged and the left hand side (by

the monotonicity of the Lebesgue integral) cannot increase. So we may assume that

both f and g are nonnegative functions. The reason this is useful is that we don’t

have to worry about the absolute values. Now let’s try to prove the inequality.

We have that (f + g)p = (f + g)p−1f +
∫
(f + g)p−1g. By the monotonicity of the

Lebesgue integral and then Holder’s inequality we have that∫
(f + g)p ≤

∫
(f + g)p−1f +

∫
(f + g)p−1g ≤ (∥f∥Lp + ∥g∥Lp)∥(f + g)p−1∥Lq

What is ∥(f+g)p−1∥Lq
? Well we have that ∥(f+g)p−1∥Lq

=
(∫

(f + g)(p−1)q
) 1

q and

since 1
p + 1

q = 1 we have that (p− 1)q = p so that ∥(f + g)p−1∥Lq
=
(∫

(f + g)p
) 1

q .

Going back to our our first inequality it follows that

(∫
(f + g)p

)1− 1
q

≤ (∥f∥Lp + ∥g∥Lp)∥(f + g)p−1∥Lq

and the left hand side of this is just ∥f + g∥Lp since 1− 1
q is equal to 1

p .

QED

Next time I will use these inequalities to show that each Lebesgue space of order

p is a Banach space and to discuss when the product of two elements of Lp(E) is

also an element of Lp(E).

19. LP IS A BANACH SPACE

Recall that a Banach space is a vector space V together with a norm ∥·∥ : V → R

such that if v1, v2, ... is a sequence in V whose terms are getting arbitrarily close to

one another then this sequence converges to a point in v in V and this convergence

is measured using the norm.

Let E be a measurable subset of Rn. We want to show that the set of functions

Lp(E) which is the set of functions {f : E → R | f is measurable and ∥f∥Lp <∞}
with ∥f∥Lp given by

(∫
|f |p

) 1
p is a Banach space.

It’s easy to see that Lp(E) is a vector space:

(1) If α ∈ R and f ∈ Lp(E), then αf ∈ Lp(E): We have that αf is a measurable

function and ∥αf∥Lp <∞ because ∥f∥Lp <∞.

(2) If f and g are in Lp(E), then f + g is in Lp(E): the function f + g is

measurable and
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∥f + g∥Lp =

(∫
|f + g|p

) 1
p

= 2

(∫
|f + g

2
|p
) 1

p

≤ 2

(∫
1

2
(|f |p + |g|p)

) 1
p

= (∥f∥pLp + ∥g∥pLp)
1
p <∞

so that f + g belongs to LP (E).

(3) The zero element of Lp(E) is the zero function. This is a measurable function

since E is measurable and ∥0∥ = 0 <∞. THerefore it is in Lp(E).

It is also easy to show that ∥ · ∥Lp is a norm on Lp(E):

(1) ∥f∥Lp(E) = 0 if and only if f is the zero element of Lp(E): If f is the zero

element of Lp(E) then ∥f∥Lp = (|f |p)
1
p = 0. If ∥f∥Lp = 0 then it must be that∫

|f |p = 0. We have previously shown that the integral of a nonnegative function

is zero if and only if that function is zero almost everywhere. So |f |p = 0 almost

everywhere. This implies that f = 0 almost everywhere.

(2) If f is in Lp(E), then ∥f∥Lp ≥ 0: this is true because the integral of a

nonnegative function is always nonnegative.

(3) If f and g are in Lp, then ∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp : This is more diffi-

cult to show. Fortunately we have already proved it. We have previously proved

Minkowski’s inequality which states exactly this.

All we are left with is the task of showing that the normed vector space Lp(E)

with the norm ∥ · ∥Lp is complete: that is, if f1, f2, · · · is a sequence in Lp(E) such

that for each number ϵ > 0 there exists an integer N such that n,m ≥ N implies

that ∥fn−fm∥ < ϵ, then there exists an element f of Lp(E) such that this sequence

converges to f , that is, ∥f − fn∥Lp converges to zero as n goes to infinity.

What would be a good guess for the function that this sequence converges to?

Well, for each point x in E we have that f1(x), f2(x), · · · is a sequence of real

numbers. Let’s define f by letting f(x) be the limit of this sequence of numbers

when this limit exists and zero otherwise.

We want to show that the sequence of numbers ∥f − f1∥Lp , ∥f − f2∥Lp , · · · con-

verges to zero. That is, we want to show that the sequence of numbers (|f − f1|p)
1
p ,(∫

|f − f2|p
) 1

p , · · · converges to zero. This is equivalent to showing that the se-

quence of numbers
∫
|f − f1|p,

∫
|f − f2|p, · · · converges to zero.

What do we know about the sequence of functions |f − f1|p, |f − f2|p, ...? If the

set on which the sequence of functions f1, f2, ... does not converge has measure zero,

then we know that this sequence of functions converges to the zero function almost

everywhere. Note that the sequence of functions f1, f2, · · · is bounded. Let’s show

this. Let ϵ = 1. Then we can find a numberM such that ∥fn−fm∥Lp < 1 whenever

n,m ≥ M . This implies that the sequence is eventually within a radius of 1 from
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the function fM and so if n ≥M , then

∥fn∥Lp = ∥fn − fm + fm∥Lp ≤ ∥fn − fm∥Lp + ∥fM∥Lp
= 1 + ∥fM∥Lp .

The first M − 1 terms of the sequence have finite norms so take the bound to be

the maximum of these and 1+∥fM∥Lp . This implies that the sequence of functions

|f−f1|p, |f−f2|p, ... is bounded. We then know this and that this sequence converges

to the zero function almost everywhere. By the Bounded Convergence Theorem we

have that limn

∫
|f − fn|p = 0.

But we’re still not done. In the last paragraph we assumed that the set of

points where the sequence of functions f1, f2, ... does not converge has Lebesgue

measure zero. Notice that we can write the limit of this sequence as the limit of the

sequence f1, f1+(f2−f1), f1+(f2−f1)+(f3−f2), .... We could even be more clever

and let nj be the number such that ∥fm − fn∥Lp < 1
2j whenever n,m ≥ nj . We

could then write the limit of the sequence fn1
, fn2

, ... as the limit of the sequence

fn1
, fn1

+(fn2
− fn1

), fn1
+(fn2

− fn1
)+ (fn3

− fn2
).... We then know that for this

sequence we have
∞∑
j=1

∥fnj+1 − fnj∥Lp <

∞∑
j=1

1

2j
= 1.

Let gi denote fni
− fni−1

. We want to show that for almost all x we have that

g1(x) + g2(x) + ... converges. Consider the set of points x where g1(x) + g2(x) + ...

does not converge. This set is contained in the set of points x such that |g1(x)| +
|g2(x)|+ ... is equal to infinity. We can write this set in the following way. Let

Sn,k = {x ∈ E | |g1(x)|+ |g2(x)|+ ...+ |gn(x)| ≥ 2k}.

This is the set of points where |g1(x)| + |g2(x)| + ...|gn(x)| is at least 2k. The

set of points x where |g1(x)| + |g2(x)| + ... is equal to infinity can be written as⋂∞
k=1

⋃
n = 1∞Sn,k. What can we say about the measure of Sn,k? We have the

following inequality 2kχSn,k
≤ |g1(x)|+ |g2(x)|+ ...+ |gn(x)|. Integrating this gives

2kµ(Sn,k) ≤
∫
|g1(x)|+

∫
|g2(x)|+ ...+

∫
|gn(x)| The right hand side is

∑n
j=1 ∥gj∥Lp

and we know from above that this is no more than 1. Since the sets S1,k, S2,k, ...

are an increasing sequence of measurable sets we have by the continuity of mea-

sure that µ (
⋃∞

n=1 Sn,k) ≤ 1
2k
.. By the continuity of measure again we have that

µ (
⋂∞

k=1

⋃
n = 1∞Sn,k) = 0.

What we have shown is that if f1, f2, ... is a sequence of functions in Lp(E) and

this sequence is a Cauchy sequence (i.e. gets closer and closer together in the Lp

norm), then there exists a subsequence fn1
, fn2

, ... that converges pointwise to a

function f except maybe on a set of measure zero. This is enough because if we

know that f1, f2, ... is a Cauchy sequence and that some subsequence fn1
, fn2

, ... of
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it converges pointwise to a function f then it must be that f1, f2, ... converges to f

in the Lp norm.

Let’s prove this. Let ϵ > 0. There exists an integer N such that ∥f − fni
∥ < ϵ

2

whenever i ≥ N . There also exists an integerM such that ∥fn−fm∥ < ϵ
2 whenever

n,m ≥M . This implies that

∥f − fi∥Lp = ∥f − fni
+ fni

− fi∥Lp ≤ ∥f − fni
∥Lp + ∥fni

− fi∥Lp < ϵ

whenever i is at least the larger of M and N . Now we are done because we have

shown that Lp(E) is complete.

20. LINEAR FUNCTIONS AND THE DUAL SPACE

Let E be a measurable subset of Rn. Consider the set of functions Lp(E). We

are now going to study functions λ : Lp(E) → R which are linear. That is, if α is

a real number and f is an element of Lp(E), then λ(αf) = αλ(f). And if f and g

are elements of Lp(E), then λ(f + g) = λ(f) + λ(g).

We first just want to make some observations about linear functions on normed

vector spaces. Let V and W be normed vector spaces. It is clear what it means for

a function λ : V →W to be linear.

When is a linear function continuous? A sufficient condition is that there exists a

constant C such that for all points x and y in V we have that the distance between

the points λ(x) and λ(y) which are both points in W is no more than the constant

C times the distance between the points x and y. That is,

∥λ(x)− λ(y)∥W ≤ C∥x− y∥V .

The reason this implies that λ is a continuous function is that we can make λ(y) as

close as we want to λ(x) by choosing y to be sufficiently close to x. Now it is clear

that a function can be continuous without satisfying this condition. For example,

consider the function f : (0, 1) → R defined by the formula f(x) = 1
x . This is

a continuous function but does not satisfy the condition. For instance let x = 1.

Then for some point y in (0, 1) the distance between the image of x under f and the

image of y under f converges to infinity as y gets closer and closer to zero. That

is, limy→0 |f(x) − f(y)| = limy→0 |1 − 1
y | = ∞. But the distance between x and y

is at most one so there can never be a constant C which works.

But, as you might expect, for linear functions this condition is equivalent to

continuity. To show this we only need to show that any linear function λ : V →W

that is continuous satisfies the condition. Continuity of λ means that for all ϵ > 0

there exists a δ > 0 such that ∥λ(x)−λ(y)∥W < ϵ whenever ∥x− y∥V < δ. First of
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all, suppose that λ is continuous at the point 0. This implies that λ is continuous

at any point x in V .

To see this, let ϵ > 0. We want to choose δ > 0 such that ∥λ(x) − λ(y)∥ < ϵ

whenever ∥x − y∥ < δ. Since λ(0) = 0 and λ is a linear function this is the same

as choosing δ > 0 such that ∥λ(0)− λ(x− y)∥ < ϵ whenever ∥0− (x− y)∥ < δ and

this is what it means for λ to be continuous at the point 0. Note that the same

argument applies to our condition. If the condition holds for x = 0, then it holds

in general.

To see this, note that ∥λ(x)− λ(y)∥W ≤ C∥x− y∥ is the same as ∥λ(0)− λ(y −
x)∥ ≤ C∥0 − (y − x)∥ and this true if the condition above holds when x (the one

in the original statement of the condition) is equal to the zero element of V . So to

prove that if a linear function is continuous, then it satisfies the condition we can

prove that if a linear function is continuous at zero, then it satisfies the condition

at x = 0. That is, we would like to show that if for each ϵ > 0 there exists a δ > 0

such that ∥λ(y)∥ < ϵ whenever ∥y∥ < δ, then it is also true that there exists a

constant C such that for all z in V we have that ∥λ(z)∥ ≤ C∥z∥.
Let’s prove this. For each z in V we have ∥λ(Kz)∥ < ϵ whenever ∥Kz∥ < δ. Let

K = δ
∥z∥ . Then we have that ∥λ(z)∥ ≤ ϵ

δ∥z∥ whenever δ ≤ δ. Let C = ϵ
δ . Then for

all z in V we have ∥λ(z)∥ ≤ C∥z∥.
The condition that for all z ∈ V there exists a constant C such that ∥λ(z)∥ ≤

C∥z∥ for a linear function is called boundedness and a linear function that satisfies

it is called bounded. What we have shown is that a linear function is bounded if

and only if it is continuous.

Here is an idea. Consider the set of all linear functions λ : V → W . Let’s

denote this set by Hom(V,W ). Let’s define a function that tells us whether or

not an element λofHom(V,W ) is bounded. The function will take as its input the

linear function λ and produce infinity if λ is not bounded and if λ is bounded the

function will output the smallest bound C0 such that for all z in V we have that

∥λ(z)∥W ≤ C0∥z∥V . That is define the function from Hom(V,W ) to R by the

formula

C0 = inf{C ∈ R : for all z in V we have ∥λ(z)∥ ≤ C∥z∥}

and denote it by ∥λ∥Hom(V,W ). One thing we need to check is that this is a number

that makes ∥λ(z)∥ ≤ C∥z∥ for all z in V . That is, it might be that this infimum

is not achieved. But it is achieved because we can find a sequence of numbers

C1, C2, ... converging to C0 such that for each n = 1, 2, ... and for each z in V we

have ∥λ(z)∥ ≤ Cn∥z∥. Taking the limit we get ∥λ(z)∥ ≤ C0∥z∥. Now it turns out

that ∥λ∥Hom(V,W ) is a norm and we will give it the name of the operator norm.

Let’s show that the operator norm is in fact a norm. We have to show three things:
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(1) The operator norm only takes nonnegative values. (2) For each real number

α and each λinHom(V,W ) we have ∥αλ∥Hom(V,W ) = |α|∥λ∥Hom(V,W ). (3) The op-

erator norm takes the value zero if and only if it is evaluated at the zero element

of Hom(V,W ). (4) The operator norm satisfies the triangle inequality: for all λ, ψ

in Hom(V,W ) we have

∥λ+ ψ∥Hom(V,W ) ≤ ∥λ∥Hom(V,W ) + ∥ψ∥Hom(V,W ).

Let’s show each of these:

(1) You can see from the definition of C0 above that the operator norm is non-

negative.

(2) This is also obvious from the definition of C0 above.

(3) If λ is the zero function, then ∥λ(z)∥ = 0 ≤ 0∥z∥ so that∥λ∥Hom(V,W ) = 0.

Now suppose that ∥λ∥Hom(V,W ) = 0. This means that for all z in the vector space

V we have that ∥λ(z)∥W ≤ 0∥z∥V = 0 Since ∥ · ∥W is a norm this implies that

λ(z) = 0. Therefore λ(z) = 0 for all z in V .

(4) Let λ and ψ be elements of Hom(V,W ). Then for each z we have that

∥(λ+ ϕ)(z)∥ = ∥λ(z)∥+ ∥ϕ(z)∥ ≤ ∥λ∥Hom(V,W )∥z∥+ ∥ϕ∥Hom(V,W )∥z∥.

This implies that

∥λ∥Hom(V,W ) + ∥ϕ∥Hom(V,W )

is a bound for λ+ ϕ. Therefore

∥λ+ ϕ∥Hom(V,W ) ≤ ∥λ∥Hom(V,W ) + ∥ϕ∥Hom(V,W ).

So the operator norm is in fact a norm. We forgot to show that Hom(V,W ) is

a vector space. This is easy to show. The zero element if the zero function which

is a linear function. The sum of two linear functions is a linear function. And a

scalar multiple of a linear function is a linear function. Therefore Hom(V,W ) is

a vector space and since the operator norm is a norm it is a normed vector space

when equipped with the operator norm.

Since we have a normed vector space a natural question to ask is whether it is

Banach space. That is, it Hom(V,W ) equipped with the operator norm complete.

That is, if λ1, λ2, ... is a Cauchy sequence in Hom(V,W ), then is there an element

λofHom(V,W ) to which this sequence converges?

Let’s try to prove this. Since λ1, λ2, ... is a Cauchy sequence for each ϵ > 0 there

exists an integer N such that m,n ≥ N implies that ∥λn − λm∥Hom(V,W ) < ϵ. This

implies that for each z ∈ V we have that λ1(z), λ2(z), ... is a Cauchy sequence in

W since n,m ≥ N implies that

∥λn(z)− λm(z)∥W ≤ ∥λn − λm∥Hom(V,W )∥z∥V < ϵ∥z∥.
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To get a guess for the function the sequence λ1, λ2, ... converges to let’s assume that

W is itself complete. This means that each Cauchy sequence in W converges to

some point. Since for each z in V the sequence λ1(z), λ2(z), ... is a Cauchy sequence

in W and W is complete we have that there is a point in W which we will denote

by λ(z) to which this sequence converges. This defines a function λ : V →W . Let’s

show that this function λ is an element of Hom(V,W ). That is, let’s show that λ

is a linear function.

Let x and y belong to V . Because each λn is a linear function and addition is

continuous we have that

λ(x+ y) = lim
n
λn(x+ y) = lim

n
λn(x) + λn(y)

= lim
n
λn(x) + lim

n
λn(y) = λ(x) + λ(y).

Let α be a real number and x an element of V . Because each λn is a linear function

and multiplication is continuous we have that

λ(αx) = lim
n
λn(αx) = lim

n
αλn(x)

= α lim
n
λn(x) = αλ(x).

Therefore λ is a linear function from V to W .

To show that Hom(V,W ) is complete we now only need to show that it is bounded

and that the Cauchy sequence λ1, λ2, ... in Hom(V,W ) converges to λ where this

convergence is in terms of the operator norm.

First note that you we can rewrite the definition of the operator norm. Our

definition of the operator norm of a linear function λ : V →W is

∥λ∥Hom(V,W ) = inf{C ∈ R : for all x, ∥λ(x)∥W ≤ C∥x∥V }.

This right hand side of this equation is the same as

inf{C ∈ R : for all x ̸= 0, ∥λ(x)∥W ≤ C∥x∥V }

This is the same as

sup

{
∥λ(x)∥W
∥x∥V

: x ∈ V − {0}
}
.

And since λ is a linear function so that∥λ(x)∥W

∥x∥V
= ∥λ

(
x

∥x∥V

)
∥ we can write y for

x
∥x∥V

and we get

sup{∥λ(y)∥W : ∥y∥V = 1}.

Note that we only need the condition ∥y∥V = 1 because y = x
∥x∥V

where x ∈ V −{0}
implies that ∥y∥V = 1. And for each x in V there exists a y = x

∥x∥V
in V such that

∥y∥V = 1. That is, the conditions y = x
∥x∥V

where x ∈ V − {0} and ∥y∥V = 1 are

equivalent. So our new definition of the operator norm of a bounded linear function

λ : V → W , that is, and element of Hom(V,W ) is ∥λ∥Hom(V,W ) = sup{∥λ(y)∥W :
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∥y∥V = 1}. Let’s show that λ is bounded. Since λ1, λ2, ... is a Cauchy sequence it

is bounded. That is, there exists a number M such that ∥λn∥Hom(V,W ) ≤M for all

n. Let’s assume that limn ∥λ− λn∥Hom(V,W ) = 0. Therefore we have that

∥λ∥Hom(V,W ) ≤ ∥λn∥Hom(V,W ) + ∥λ− λn∥Hom(V,W ).

Taking the limit at n goes to infinity gives

∥λ∥Hom(V,W ) ≤M

which implies that M is a bound for λ. That is, for all x ∈ V we have that

∥λ(x)∥W ≤ M∥x∥V . Finally, let’s show that limn ∥λ − λn∥Hom(V,W ) = 0. Let y

belong to V such that ∥y∥V = 1. Then we have that limn ∥λ(y) − λn(y)∥W = 0.

From the definition of the operator norm we just derived this implies that λn

converges to λ under the operator norm as n tends to infinity. That is, limn ∥λ −
λn∥Hom(V,W ) = 0.

We have shown that if W is complete then Hom(V,W ) is a Banach space.

Given a normed vector space V we will study the set of real valued linear func-

tions Hom(V,R). Since the real numbers are complete this set equipped with the

operator norm is a Banach space. We will call Hom(V,R) the duel space of V and

denote it by V ∗.

21. THE HAHN BANACH THEOREM

Let V be a normed vector space. Recall that the dual of V denoted V ∗ is

the set of bounded linear functions from V to the real numbers R. Recall that a

linear function λ : V → R is called bounded if there exists a number C such that

∥λ(x)∥W ≤ C∥x∥V for all x in V . Last time we proved that the dual space with

the operator norm is a Banach space. Recall that the operator norm on the dual

space of V takes as its input a bounded linear function λ : V → R and outputs the

smallest bound for λ. That is

∥λ∥V ∗ = inf{C ∈ R : for all x in V, |λ(x)| ≤ C∥x∥V }.

Last time we showed that another way to define the operator norm ∥ · ∥V ∗ is by the

formula

∥λ∥V ∗ = sup{|λ(x)|W : ∥x∥V = 1∥}.

Let’s now consider the dual space of the dual space. That is, V ∗ denotes the dual

space of V and V ∗∗ denotes the dual space of the dual space of V . The dual space of

the dual space of V is the set of bounded and linear functions f : V ∗ → R. That is,

an element of V ∗∗ is a function f that associates each bounded and linear function

λ : V → R with a real number and that are themselves bounded and linear. The

operator norm on the dual space of the dual space of V is defined as before except
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now instead of using the norm on V we use the operator norm on V ∗∗. That is,

∥ · ∥V ∗∗ is defined for any bounded and linear function f : V ∗ → R by the formula

∥f∥V ∗∗ = inf{C ∈ R : for all λ in V ∗, |f(λ)| ≤ C∥λ∥V ∗}

Another way to define this is by the formula

∥f∥V ∗∗ = sup{|f(λ)| : ∥λ∥V ∗ = 1}.

This second definition says that the operator norm on the dual space of the dual

space of V is found by looking at the value of f on elements λ of the dual space

of V that have at their smallest bound the number 1. Such functions λ are such

that for all elements x of V we have |λ(x)| ≤ ∥x∥V and for some y in V we have

|λ(y)| = ∥y∥V .
Consider the function that takes each element v of V to the function e(v) which

is an element of V ∗∗ defined by the formula e(v)(λ) = λ(v). So this function takes

as its input an element of V and gives as its output the map that will evaluate any

bounded and linear function λ : V → R at that element.

First of all, let’s check that e(v) is an element of the dual space of the dual space

of V .

Is e(v) a linear function? Let λ1 and λ2 be elements of V ∗. We have

e(v)(λ1 + λ2) = (λ1 + λ2)(v) = λ1(v) + λ2(v).

Let α be a real number and let λ be an element of V ∗. We have

e(v)(αλ) = (αλ)(v) = αλ(v).

So e(v) is a linear function.

Is e(v) bounded? First of all, suppose that e(v) is bounded whenever ∥v∥V = 1.

This means that there exists a constant C such that |e(v)(λ)| ≤ C∥λ∥V ∗ for all

λinV ∗. This can be rewritten as |λ(v)| ≤ C∥λ∥V ∗forallλinV ∗. For an arbitrary

v let y = v
∥v∥V

. Then we have that |λ(y)| ≤ C∥λ∥V ∗ which implies that |λ(v)| ≤
(C∥v∥V )∥λ∥V ∗ so e(v) is bounded.

Let’s show that e(v) is bounded whenever ∥v∥V = 1. So suppose v is an element

of V such that ∥v∥V = 1. Consider ∥e(v)∥V ∗∗ . This is equal to sup{|e(v)(λ)| :
∥λ∥V ∗ = 1} which is equal to sup{|λ(v)| : ∥λ∥V ∗ = 1}.

That ∥λ∥V ∗ = 1 means that |λ(x)| ≤ ∥x∥V for all x in V . In particular we have

|λ(v)| ≤ 1 and since this is true for all λ in V ∗ such that ∥λ∥V ∗ = 1 we have that

∥e(v)∥V ∗∗ ≤ 1.

Therefore for each v in V we have that e(v) is a bounded and linear function

and so an element of the dual space of the dual space of V . That is, for all v in V

the function e(v) is an element of V ∗∗.
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What can we say about the function that maps each point in V to the element

e(v) of V ∗∗? Let’s make some claims.

Claim 1: The function e : V → V ∗∗ is injective. That is, if e(v) = e(u), then

v = u. Claim 2: The function e : V → V ∗∗ is an isometry onto its image. That

is, for each v in V we have that ∥v∥V = ∥e(v)∥V ∗∗ . Claim 3: For any nonzero v in

V there exists a function λ : V → RinV ∗ such that ∥λ∥V ∗ = 1 and λ(v) = ∥v∥V .
Claim 4: For any vector v in V such that ∥v∥V = 1 there exists λ in V ∗ such that

∥λ∥V ∗ = 1 and λ(v) = 1.

Today we will prove the Hahn-Banach Theorem which will show that all of these

claims are true.

The Hahn-Banach Theorem: Let V be a normed vector space and V0 a subspace

of V . Any bounded and linear map λ0 : V → R can be extended to a bounded

linear map λ : V → R where the norm of the extension does not need to be any

bigger than the norm of the linear map, that is, ∥λ∥V ∗ = ∥λ0∥V ∗
0
.

Consider the function e : V → V ∗∗. Is this a linear function?

Let v and u belong to V . We have that e(v + u) is the bounded and linear

function in V ∗∗ that maps each element λofV ∗toλ(v + u) = λ(v) + λ(u). This is

the same as the function e(v) + e(u).

Let α be a real number and let v be an element of V . We have that e(αv) maps

each element λofV ∗toλ(αv) = αλ(v). This is what the function αe(v) does.

So e : V → V ∗∗ is a linear function. Is it bounded? To show it is bounded we

need to show that for each v in V there exists a number C such that ∥e(v)∥V ∗∗ ≤
C∥v∥V . This is the same as saying that the set of numbers ∥e(v)∥V ∗∗ such that

v is in V and ∥v∥V = 1 is bounded above. Suppose ∥v∥V = 1. We have that

∥e(v)∥V ∗∗ is equal to sup{|e(v)(λ)| : ∥λ∥V ∗ = 1} and this is equal to sup{|λ(v)| :
∥λ∥V ∗ = 1}.That∥λ∥V ∗ = 1 means that |λ(x)| ≤ ∥x∥V for all x in V . Therefore

∥e(v)∥V ∗∗ ≤ 1 which implies that e is bounded.

What is the relationship between the four claims and the Hahn-Banach Theorem?

First of all, I claim that Claim 3 and Claim 4 are equivalent. Since Claim 4 is a

special case of Claim 3 we have that Claim 3 implies Claim 4. Now suppose that

Claim 4 is true. Let’s try to prove claim 4. Let v be a nonzero vector in V . Let y

denote the vector 1
∥v∥V

v. Then ∥y∥V = 1. So by Claim 4 there exists a bounded

linear function λ : V → R such that ∥λ∥V ∗ = 1 and λ(y) = 1. We can rewrite the

last equation as λ(v) = ∥v∥V .
Now suppose that claim 2 is true. That is, suppose that the map e : V → V ∗∗

is an isometry onto its image which means that for each v in V we have ∥v∥V =

∥e(v)∥V ∗∗ . The right hand side of this is equal to sup{|λ(v)| : ∥λ∥V ∗ = 1} and it

can be shown that this supremum is achieved. That is, there exists a function λ in
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V ∗ with ∥λ∥V ∗ = 1 such that λ(v) = ∥v∥V . But this is Claim 3. Therefore Claim

2 implies Claim 3.

Does Claim 3 imply Claim 2? Suppose that λ is an element of V ∗ such that

∥λ∥V ∗ = 1. This means that |λ(v)| ≤ ∥v∥V for all v in V . Since ∥e(v)∥V ∗∗ is

equal to sup{|λ(v)| : ∥λ∥V ∗ = 1} we have that ∥e(v)∥V ∗∗ ≤ ∥v∥V . By Claim 3 we

have that there exists a λinV ∗ such that ∥λ∥V ∗ = 1 and λ(v) = ∥v∥V . Therefore

∥e(v)∥V ∗∗ = ∥v∥V . So Claim 3 does imply Claim 2.

So far we have shown that Claim 2 is equivalent to Claim 3 and that Claim 3 is

equivalent to Claim 4.

Note that Claim 2 implies Claim 1 because any isometry is automatically injec-

tive. To see this suppose v ̸= u. Then there is some positive distance between them.

This implies there is a positive distance between e(v) and e(u) so that e(v) ̸= e(u).

Given that e is injective, if Claim 2, were true then certainly we could prove that

Claim 1 implies Claim 2. I’m not sure whether this means that Claim 1 implies

Claim 2. When are two true theorems equivalent?

What is the relationship between Claims 2,3, and 4 and the Hahn-Banach The-

orem? Let’s suppose that the Hahn-Banach Theorem is true. Let’s try to prove

that Claim 4 is true.

Let v be a vector in V such that ∥v∥V = 1. Consider the subspace V0 of V

consisting of all scalar multiples of v. Let λ0 : V → R be defined by the formula

λ(x) = α where α is the unique number such that x = αv. This is clearly a linear

function. Is it bounded? It is bounded if there exists a constant C such that

|λ(x)| ≤ C∥x∥ for each x ∈ V0. We get equality by choosing C = 1 so ∥λ∥V ∗ = 1.

By the Hahn-Banach Theorem there exists a bounded linear map λ : V → R that

is an extension of λ0 and is such that ∥λ0∥V ∗
0

= ∥λ∥V ∗ . That is ∥λ∥V ∗ = 1. We

have that λ(v) = λ0(v) = 1 because λ is an extension of λ0.

This shows that if the Hahn-Banach Theorem is true then Claim 4 is true. What

about the reverse. I’m not sure about the reverse.

Let’s start by proving Claim 4 for finite dimensional vector spaces.

Claim 4: If v ∈ V such that ∥v∥V = 1, then there exists λ ∈ V ∗ such that

λ(v) = 1 and ∥λ∥V ∗ = 1.

Proof: Let’s prove this by induction.

Case 1: Suppose that the dimension of V is equal to the number 1. Let v be in

V be such that ∥v∥V = 1. Define λ : V → R by λ(v) = 1 and for x in V there exists

a unique number α such that x = αv, define λ(x) = α. We have shown previously

that such a λ is a bounded and linear function from V to R such that ∥λ∥V ∗ = 1.

Case 2: Suppose that the dimension of V is equal to the number 2. Let v be

a point in V such that ∥v∥V = 1. Let V0 be the one dimensional subspace of V

consisting of all scalar multiples of v. By Case 1 there exists a bounded and linear
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function λ0 : V0 → R such that ∥λ0∥V ∗ = 1 and λ0(v) = 1. Note that λ0 is the

only choice with these properties. Since the dimension of V is equal to the number

2 there exists a vector y that is in V but not in V0. We can assume that ∥y∥V = 1

To define an extension λ : V → R of λ0 to the whole space we only need to choose

the number t such that λ(y) = t. We want to have ∥λ∥V ∗ = 1. This implies that

we need |λ(y)| ≤ 1. We need more than this though. We need that for every x in

V such that ∥x∥V = 1 we have |λ(x)| ≤ 1. What we want is to be able choose a

number t such that this is true.

Each point x such that ∥x∥V = 1 can be written as a v+ by where both a and b

belong to [−1, 1]. We know that 1 = ∥x∥V ≤ |a|+ |b| ≤ 2. What we need to do is

to choose t such that whenever ∥x∥V = 1 we have |λ(x)| ≤ 1. We have that λ(x) =

a+ bt. We want the following two inequalities to hold: −1 ≤ a+ btanda+ bt ≤ 1.

these can be rewritten as −1−a
b ≤ t and t ≤ 1−a

b . It can be shown that there is a t

that satisfies these inequalities.

QED

Not that in this proof we have proved the Hahn-Banach Theorem when the

vector space V is finite dimensional. Next time we will prove the Hahn-Banach

Theorem when V is possible infinite dimensional.

Recall the Hahn-Banach Theorem: Let V0 be a subspace of a normed vector

space V . Any bounded and linear function λ0 : V0 → R can be extended to a

bounded and linear function λ : V → R such that ∥λ∥V ∗ = ∥λ0∥V ∗
0
.

We saw last time that this theorem has various implications. For example it

implies that the function e : V → V ∗∗ defined by e(v)(λ) = λ(v) is an isometry.

That is ∥v∥V = ∥e(v)∥V ∗∗ . It also implies the equivalent statement that for each

v in V such that ∥v∥V = 1 there exists a λ in V ∗ such that ∥λ∥V ∗ = 1 and

λ(v) = ∥v∥V . Last time we proved this and in the process of proving it we proved

the Hahn-Banach theorem when V has finite dimension.

Today we will prove the Hahn-Banach theorem when V possibly has infinite

dimension. Our approach will be the following. Let P be the set of ordered pairs

(W, g) where W is a subset of V that contains V0 and g :W → R is a bounded an

linear function that is an extension of λ0 such that ∥g∥W∗ = ∥λ0∥V ∗
0
.

Let’s define the following ordering <P on the set P . For any two elements (W, g)

and (W ′, g′) of P let’s say that (W, g) <P (W ′, g′) to mean that W ⊊W ′ and g′ is

an extension of g.

Suppose we could prove the existence of an element (W ′, g′) in P such that for

all (W, g) in P not equal to (W ′, g′) it is not true that (W ′, g′) <P (W, g).

This must mean that W ′ = V. If it did not mean this then we could find a vector

v in V that is not in W ′. We could then consider the set smallest subspace W of V

containing W ′ ∪ {v} and construct using the procedure of last time a bounded and
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linear function g :W → R such that ∥g∥W∗ = ∥λ0∥V0
. But this means that (W, g)

is in P and (W ′, g′) <P (W, g).

So our goal for the proof of the Hahn-Banach Theorem is to prove the existence of

an element (W ′, g′) in P such that for all (W, g) in P it is not true that (W ′, g′) <P

(W, g). We will call such an element (W ′, g′) a maximal element of P .

Thus our goal is to prove the existence of a maximal element in the set P . Let’s

do this in a lemma.

Definition: A partially ordered set is a set P with a binary relation <P that

is reflexive (not x <P x for all x ∈ P ), transitive (x <P y and y <P z implies

x <P z), and asymmetric (if x <P y, then not y <P x.)

You can see that P with the binary relation <P is a partially ordered set.

Definition: A linearly ordered set is a set P with a binary relation <P such

that P with the binary relation <P is a partially ordered set and such that <P is

complete (for all x, y are distinct elements of P , then x <P y or y <P x).

You can see that P with the binary relation <P is not a linearly ordered set.

Definition: A partially ordered set P is well ordered if each nonempty subset Q

of P has a least element: that is, an element x in Q such that x <P q for each q in

Q.

Zorn’s Lemma: Let P be a partially ordered set such that each linearly ordered

subset of P has an upper bound. Then P has a maximal element.

Proof: Suppose that P is a partially ordered set such that each linearly ordered

subset of P has an upper bound and that P has no maximal element.

Let Q be a linearly ordered subset of P . We have assumed that Q has an upped

bound: that is, there exists an element λ(Q) in P such that q <P λ(Q) for each q

in Q.

Let’s say that a subset Q ⊆ P is a good chain if Q is well-ordered and each

element x in Q satisfies the formula x = λ({q ∈ Q : q <P x}).
Note that there is no largest good chain in P . To see this let Q be a good chain

in P . Consider the set Q∪ λ(Q). This set is well ordered. Let x be in Q∪ λ(Q). If

x ∈ Q we have that x = λ({q ∈ Q : q <P x}) because Q is a good chain. Otherwise,

x = λ(Q). Therefore Q ∪ λ(Q) is also a good chain. Since any singleton set is a

good chain this implies that there is no largest good chain in P .

Now I claim that if Q and Q′ are both good chains in P then exactly one of the

following conditions holds:

(1) Q = Q′. (2) There exists an element q0 ∈ Q such that Q′ = {q ∈ Q : q <P

q0}. (3) There exists an element q′0 ∈ Q′ such that Q = {q′ ∈ Q′ : q′ <P q′0}.
Note that the three possibilities are mutually exclusive because (2) implies that

Q ⊊ Q′ and (3) that Q′ ⊊ Q.
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What are the alternatives? It may be that there is an element q in Q that is not

in Q′ and that there is an element q′ in Q′ that is not in Q. Let’s choose q in Qand

not in Q′ such that if x is in Q and x <P q, then x is in Q′.

Consider the set {x ∈ Q : x <P q}. Call this set W . If W is equal to Q′ we are

done. But we know this is not the case because there exists a q′ in Q′ that is not in

Q. So it must be that W ⊊ Q′. Let c denote the least element of Q′−W . Then we

have that W is equal to {x ∈ Q′ : x <P c}. Since both Q and Q′ are good chains

we have that c = λ(W ) and that d = λ(W ) so that q actually does belong to Q′.

A contradiction.

I now claim that if {Qα} is a collection of good chains, then the union
⋃
Qα is

also a good chain. We have to show that
⋃
Qα is a well-ordered set and that each

element x in
⋃
Qα satisfies the formula x = λ({q ∈

⋃
Qα : q <P x}).

To show that
⋃
Qα is well ordered we need to show that it is a linearly ordered

set and that each nonempty subset of
⋃
Qα has a least element.

The set
⋃
Qα is a partially ordered set because it is a subset of P and P with

the binary relation <P is a partially ordered set. To show that
⋃
Qα is a totally

ordered set we just need to show that if q and q′ are distinct elements of
⋃
Qα,

then q <P q′ or q′ <P q. There exists a good chain Q such that q is an element of

Q. There exists a good chain Q′ such that q′ is an element of Q′. We have shown

that one of these must be a subset of the other so for one of these both q and q′

are elements. Since both Q and Q′ are good chains this implies that q <P q′ or

q′ <P q. Therefore
⋃
Qα is a linearly ordered set.

Let’s show that each nonempty subset W of
⋃
Qα has a least element. A least

element of W is an element x in W such that for all y in W −{x} we have x <P y.

It is not clear to me that the
⋃
Qα is a well-ordered set. Apparently from here it

can be shown that it is.

If
⋃
Qα is well-ordered for each x in

⋃
Qα we have that x = λ({q ∈

⋃
Qα : q <P

x}). The reason this is true is because
⋃
Qα − {q ∈

⋃
Qα : q <P x} is a nonempty

subset of
⋃
Qα and so has a least element x.

If this is true then the union of all good chains is the largest good chain. But

we have shown that there is no largest good chain. This contradiction completes

the proof of Zorn’s lemma.

QED

Now let’s prove the Hahn-Banach Theorem.

Proof of the Hahn-Banach Theorem: As we defined it before the proof of Zorn’s

Lemma the set P with the binary relation <P is a partially ordered set. Suppose

that Q is a linearly ordered subset of P . We would like to show that there exists an

upper bound for Q. We have that Q = {(Wα, gα)}α where each Wα is a subspace

of V that contains V0 and each gα : Wα → R is a bounded and linear function
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that is an extension of λ0 and is such that ∥gα∥W∗
α
= ∥λ0∥V ∗

0
. Let’s define W to be⋃

αWα and define g by saying that g(x) = gα(x) whenever x ∈Wα. Note that the

definition for g makes sense because Q is linearly ordered. If x happens to belong

to Wα1
and Wα2

, then since Q is linearly ordered it must be that one of these is a

strict subset of the other and also that gα1
(x) = gα2

(x).

First note that W is a subspace of V that contains V0. It is clear that it is

contained in V and that it contains V0 because each term of the union of which it

is made does. But is it also a vector space: it has a zero element; if x and y belong

to W then x + y is in W because Q is linearly ordered there exists a set Wα that

contains both and so contains x+y; if c ∈ R and x is in W then cx is in W because

x belongs to some vector space Wα and so this vector space also contains cx.

Let’s now show that g : W → R is a bounded and linear function. Let x and y

belong to W then since Q is totally ordered there exists a Wα that contains both

of the points x and y and so the point x+ y. Then

g(x+ y) = gα(x+ y) = gα(x) = gα(y) = g(x) + g(y)

. Not let c be a real number and x an element ofW . Then there exists a vector space

Wα that contains x and so also contains cx. Then g(cx) = gα(cx) = cgα(x) = cg(x).

So g is a linear function.

Let’s show that g is bounded. We have for each α that ∥gα∥W∗
α

= ∥λ0∥V ∗
0
.

Suppose there were to exist an x in W such that ∥x∥V = 1 and |g(x)| > ∥λ0∥V ∗
0
.

There exists an α such that x belongs to Wα and so g(x) = gα(x). We then have

that |gα(x)| > ∥λ0∥V ∗
0
which means that ∥gα∥W∗

α
> b∥λ0∥V ∗

0
which is not so.

Therefore g : W → R is a linear and bounded function that is an extension of

λ0 : V0 → R and is such that ∥g∥W∗ = ∥λ0∥V ∗
0
.

This shows that (W, g) is an upper bound for Q.

By Zorn’s Lemma the set P has a maximal element (M,λ) and it must be that

M = V otherwise we could find a larger element using the procedure in the proof

of yesterday.

QED

Here is an application of the Hahn-Banach Theorem: Let E be a measurable

subset of Rn with finite Lebesgue measure. Let V0 denote the set of all bounded

and measurable real valued functions on E. Let V denote the set of measurable

functions on E. Then V is a vector space and V0 is a subspace of V . Let’s turn

V into a normed vector space by giving it the supremum norm: that is, if f is

in V , then the supremum norm of f is the number ∥f∥ defined by the formula

∥f∥ = sup{|f(x)| : x ∈ E}. Now think about the Lebesgue integral as a real

valued function on V0. This function is linear. It is also bounded because if f

belongs to V0 and ∥f∥ = 1, then
∫
f ≤ µ(E). In other words the operator norm of
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the Lebesgue integral on V0 is equal to µ(E): ∥
∫
∥V ∗

0
= µ(E). Recall The Hahn-

Banach Theorem: Let V be a normed vector space and V0 ⊆ V a subspace. Any

bounded and linear function λ0 : V0 → R can be extended to a bounded and linear

function f : V → R such that ∥f∥V ∗ = ∥λ0∥V ∗
0
.

So by The Hahn-Banach Theorem the Lebesgue integral
∫
on the set of bounded

and measurable real valued functions on E can be extended to a bounded and linear

function
∫̂
on the set of all measurable functions in such a way ∥

∫̂
∥V ∗ = ∥

∫
∥V ∗

0
.

22. THE DUAL OF LP AND THE HAHN DECOMPOSITION

THEOREM

Let E be a measurable subset of Rn with finite measure. Recall that L1(E) is

the set of measurable functions f : E → R such that ∥f∥L1 =
∫
|f | < ∞. Recall

that the L1(E)∗ is the set of bounded and linear functions λ : L1(E) → R where

bounded is defined using the operator norm ∥λ∥L1∗ which is the smallest number

C such that —λ(f)| ≤ C∥f∥L1 . Also, recall that the operator norm of a function

λinL1(E)∗ can be written as

sup{|λ(f)| : f ∈ L1(E) and ∥f∥L1 = 1}.

Let λ ∈ L1(E)∗. Today we will study this function. It turns out that there

exists a measurable function f : E → R such that for each g in L1(E) we have

λ(g) =
∫
gf . A similar result will apply for Lp(E) where p > 1.

The function λ is continuous (recall that a linear function is bounded if and only

if it is continuous). Note that if S is a measurable subset of E then χS belongs to

L1(E). Suppose we knew the value of λ(χS) for each measurable subset S of E.

Because λ is linear, if g is a simple function (and so is in L1(E)), then we know the

value of λ(g). For an arbitrary function g in L1(E) we can construct a sequence of

simple functions g1, g2, ... that converge to g in the L1 norm. By the continuity of

λ we have that limi λ(gi) = λ(g).

So we only need to know the value of λ on χS when S is a measurable subset of

E to know what value λ takes at an arbitrary element of L1(E). Notice that this

is kind of like a measure. We want to assign to each measurable subset S of E a

number λ(χS). The major difference here is that λ(χS) may be negative.

Does there exist a number M such that −M ≤ λ(χS) ≤ M for all measurable

subsets S of E? Since λ is bounded there exists a number C such that |λ(χS)| ≤
C
∫
χS ≤ Cµ(E). So the answer to this question is ”yes”. For instanceM = Cµ(E)

works.

Let’s introduce the following definition. Let E be a measurable subset of Rn. A

finite signed measure is a function ν from the collection of measurable subsets of E

to the real numbers that satisfies the following two properties:
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(1) There exists a number M such that −M ≤ ν(S) ≤ M for each measurable

subset S of E. (2) If S1, S2, ... are disjoint and measurable subsets of E, then

ν(S1 ∪ S2 ∪ ...) = ν(S1) + ν(S2) + ....

Note that |ν(S1)| + |ν(S2)| + ... ≤ 2M so that the series ν(S1) + ν(S2) + ...

converges absolutely and so converges.

I claim that the function ν defined by ν(S) = λ(χS) is a finite signed measure.

We have already proved property (1) holds for M = Cµ(E). Let’s show that

property (2) holds too. Let S1, S2, ... be a sequence of measurable and disjoint

subsets of E. For each positive integer n we have that

ν(

n⋃
i=1

Si) = λ(χ⋃n
i=1 Si

) = λ(

n∑
i=1

χSi) =

n∑
i=1

ν(Si).

The continuity of λ gives the result.

Let’s call ν positive if it is nonnegative and let’s call it negative if it is nonpositive.

Let’s try to prove the following theorem:

The Hahn Banach Theorem: Let ν be a finite signed measure on E. Then E can

be written as the disjoint union of the sets E+ and E− such that the restriction of

ν to E+ is the positive finite signed measure ν+ and the restriction of ν to E− is

the negative finite signed measure ν−.

Proof: I claim that if S1, S2, ... are measurable subsets of E such that ν|Si
is

positive for each i = 1, 2, ..., then ν|⋃Si
is positive.

To see this let S be a subset of
⋃
Si. Then by the countable additivity of ν we

have that

ν(S) = ν(S ∩ S1) + ν(S ∩ (S2 − S1)) + ν(S ∩ (S3 − (S2 − S1))) + ...

where each term in this sum is a positive number because each ν|Si is positive. This

implies that ν(S) is a positive number so that ν|⋃Si
is positive.

Consider all real numbers of the form ν(S) where ν|S is positive. This set is

nonempty (e.g. you can take S to be the empty set). It is bounded below because

each number in the set is nonnegative and it is bounded above because ν is a finite

signed measure. So we can let x = sup{ν(S) | S ⊆ E and ν| is positive}. S1, S2, ...

are measurable subsets of E such that ν|Si is positive for each i = 1, 2, ... and such

that the sequence of numbers ν(S1), ν(S2), ... converges to x. Let E+ =
⋃
Si. By

our claim we know that ν|S is positive. We also have that for each i, x ≥ ν(E+) ≥
ν(Si). This implies that ν(E+) = x and we have that v|E+ is positive. Note that

E+ is also the union of all subsets S of E such that ν|S is positive.

Let’s E− denote the set E−E+. Let’s show that ν|E− is negative. Suppose not.

Then there exists a subset S of E− such that ν(S) > 0. I will show that we can

find a subset S′ of this set such that ν|S′ is positive. This would be a contradiction
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because E+ is the union of all sets on which ν is positive. Define

Badness(S) = sup t ≥ 0 : B ⊆ S and t = −ν(B).

Choose a set B1 such that ν(B1) ≤ −Badness(S)
2 . Choose a set B2 such that ν(B2) ≤

−Badness(S−B1)
2 . And so on. Because ν is countably additive we have that the

badness of S is no more than half the badness of S − B1. This is because we

removed at least half the badness of S when we removed B1. Likewise we have that

Badness(S−B1 −B2 − ...−Bn) ≤ Badness(S)
2n so that the badness of S−B1 −B2 −

... − Bn converges to 0. Let S′ = S − B1 − B2 − .... We have that BadnessS′ = 0

which implies that ν|S′ is positive. Note also that ν(S′) > ν(S) > 0. Therefore

where is no subset S of E− such that ν(S) > 0. This implies that ν|E− is negative.

QED

23. THE RADON-NIKODYM THEOREM AND THE HAHN-BANACH

THEOREM

We have proved The Hahn Decomposition Theorem. Let’s use it to understand

the relationship between Lebesgue measure µ and some finite signed measure ν.

Let E be a measurable subset of Rn that has finite Lebesgue measure and suppose

that ν is a finite signed measure on E.

Let t be a real number and consider the the function given by the formula ν−tµ.
Note that because the Lebesgue measure on E is a finite signed measure this is a

finite signed measure. In face, we can make the following observation.

Observation: the set of finite signed measures on E is a vector space.

Let’s apply The Hahn Decomposition Theorem to ν − tµ. This says that there

exists a set Et such that (ν − tµ)|Et is positive and (ν − tµ)|E−Et is negative.

Let’s write out what this means. If S is a measurable subset of Et, then ν(S) ≥
tµ(S). And if S is disjoint from Et, then ν(S) ≤ tµ(S).

You can now see how The Hahn Decomposition Theorem can tell us something

about the relationship between ν and µ.

Question: What we would like to do now is to find the relationship between Et

and Et′ when t
′ > t.

One would expect that as t gets bigger the set on which ν−tµ is positive becomes

smaller (this is because µ is positive on all of E). So we might expect that Et′ ⊆ Et.

This is almost true. The reason it is not just plain true is that the Hahn-

Decomposition is not unique. We can always move countably many sets of measure

zero between the sets E+ and E−E+ without affecting the positivity or negativity

of the measure there. It is almost true because we cannot move any set of nonzero

measure between E+ and E − E+ without breaking the positivity or negativity of

the measure.
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What to do? It will be convenient for us to only consider the case where t is a

rational number. Define the set Ft by the formula Ft =
⋃

t′≥t,t′∈QEt′ .

Note that (ν − tµ)|Ft
is positive and that (ν − tµ)E−Ft

is negative.

Now the answer to the question is ”yes”: if t′ > t, then Ft′ ⊆ Ft.

So let’s suppose that Et actually denotes Ft and continue our discussion using

the notation Et.

Let’s now define the function f : E → R by the formula f(x) = sup{t ∈ Q : x ∈
Et}. Does this formula make any sense? Could it be that this supremum does not

exist? There are two cases in which this supremum might not exist.

Case 1: x ∈ Et for all t. That is, x ∈
⋂
Et. I claim that

⋂
Et is a set of measure

zero.

For each rational number t we have that ν(
⋂
Et) ≥ tµ(

⋂
Et). Now note that if

µ(
⋂
Et) > 0 then ν(

⋂
Et) = ∞ and this if impossible because ν is a finite signed

measure. So
⋂
Et is a set of Lebesgue measure zero.

Case 2: x ̸∈ Et for all t. That is, x ∈ E −
⋃
Et.

This implies that for each rational number t we have ν(E−
⋃
Et) ≤ tµ(E−

⋃
Et).

Let’s apply the same argument as before. Suppose that µ(E −
⋃
Et) > 0. Then

it must be that ν(E −
⋃
Et) = −∞ and this contradicts that ν is a finite signed

measure. Therefore E −
⋃
Et is a set of Lebesgue measure zero.

In all other cases the function is defined because the set {t ∈ Q : x ∈ Et} is

nonempty and it does not contain all rational numbers t. Since it does not contain

all rational numbers t there exists a rational number t′ such that x /∈ Et′ . As we

have shown above this implies that x ̸∈ Et for all t > t′. Therefore t’ is an upper

bound for the set {t ∈ Q : x ∈ Et}. These two things implies that the supremum

of this set exists.

What does this mean? It means that the function f is defined except perhaps on

a subset Z of E that has Lebesgue measure zero. So let’s redefine the domain of f

to be the set E − Z.

I now claim that f is a measurable function.To see this note that we can define

f using the following formula:

f(x) = sup{tχEt
(x) : t ∈ Q}.

That is, we can define f the be the pointwise supremum of measurable functions.

We have previously shown that the pointwise supremum of measurable functions is

a measurable function. Therefore f is a measurable function.

Our goal is to see what we can say about the relationship between ν and µ.

Consider the set Y = {x ∈ E : a < f(x) < b}. This is a subset of E − Z. We

know that if x belongs to Y , then a < f(x) < b. This means that x ̸∈ Ea and that

x ∈ Eb. So Y is a subset of Eb − Ea.
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This implies that if S is a measurable subset of Y , then S is a subset of Eb so

that ν(S) ≥ bµ(S), and S is a subset of E − Ea so that ν(S) ≤ aµ(S). That is,

if S is a measurable subset of Y , then bµ(S) ≤ ν(S) ≤ aµ(S). We now have an

estimate for ν in terms of µ.

How can we make this estimate more precise? Easy. Just take a and b to be

closer to one another.

Now suppose that g : E−Z → R is a simple function. This means that g(E−Z)
is a finite set {v1, v2, ..., vk} ⊆ R. Then we can write E − Z = Y1 ∪ Y2 ∪ ... ∪ Yk
where Yi is the subset of E − Z on which g takes the value vi.

Suppose that f ≥ g. Then we have that
∫
fdµ ≥

∫
gdµ =

∑
i viµ(Yi). But since

f ≥ g we have that f(x) ≥ viforeachxinYi. This implies that Yi ∩ Evi = ∅ which

implies that ν(Yi) ≤ viµ(Yi). Therefore∫
fdµ ≥

∑
i

ν(Yi) = ν(E − Z).

Now suppose that f ≤ g. Then we have that
∫
fdµ ≤

∫
gdµ =

∑
i viµ(Yi). Since

f ≤ g we have that f(x) ≤ vi for each x ∈ Yi. This implies that

Yi ⊆ Evi = ∅sothatν(Yi) ≥ viµ(Yi).

Therefore ∫
fdµ ≤

∑
i

ν(Yi) = ν(E − Z).

Therefore

ν(E − Z) =

∫
fdµ.

Exactly the same logic applies if S is a measurable subset of E. Then we could

define a simple function g : S − Z → R and the previous argument would show

that

ν(S − Z) =

∫
fχSdµ.

In general we have proved that if ν is a measurable subset of E, then there exists

a set Z of Lebesgue measure zero such that

ν(S) = ν(S ∩ Z) +
∫
fχSdµ

This is called The Radon-Nikodym Theorem. Let’s state it as a theorem.

The Radon-Nikodym Theorem: Let E be a measurable subset of Rn and ν a

finite signed measure on E. Then there exists a subset Z of E with Lebesgue

measure zero and a measurable function f : E − Z → R such that

ν(S) = ν(S ∩ Z) +
∫
fχSdµ

for all measurable subsets S of E.
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In our proof we assumed that E had finite Lebesgue measure. To prove the case

where Ehas infinite Lebesgue measure just cut E up into countably many sets of

finite Lebesgue measure, apply our argument to each piece.

24. THE CHANGE OF VARIABLES FORMULA

Recall The Radon-Nikodym Theorem: Let E be a measurable subset of Rn and

let ν be a finite signed measure on E. Then there exists a subset Z of E which is a

set of Lebesgue measure zero and a measurable function f : E − Z → R such that

if S is a measurable subset of E, then

ν(S) = ν(S ∩ E) +

∫
fdµ.

The reason this theorem is nice is that it tells us the relationship between any finite

signed measure and Lebesgue measure.

Definition: A finite signed measure is absolutely continuous with respect to

Lebesgue measure if whenever a set has Lebesgue measure zero it also has ν measure

zero.

So for a finite signed measure that is absolutely continuous with respect to µ the

conclusion of the Radon-Nikodym theorem is that if S is a measurable subset of E,

then ν(S) =
∫
fdµ.

Now let g : E → R be a simple function with image v1, v2, ..., vk on the sets

Y1, Y2, ..., Yk. Then∫
gdν =

k∑
i=1

viν(Yi) =

k∑
i=1

vi

∫
χYifdµ =

∫
gfdµ.

This can be generalised so that if g is a measurable function (I suppose with respect

to both ν and Lebesgue measure), then∫
gdν =

∫
gfdµ.

This is quite powerful. For instance, in probability we may have a probability mea-

sure with which we want to integrate random variables to compute their expected

value. The Radon-Nikodym Theorem tells us that we can turn this integral into a

Lebesgue integral.

Here’s another application of The Radon-Nikodym Theorem. Suppose that U is a

bounded and open subset of Rn and that h : U → V is a bijection. In this situation

we can define a measure ν on U by the formula ν(S) = µ(h(S)) for each subset S

of U . Note that the measure ν might not be absolutely continuous with respect to

µ. This will happen if the function h maps a subset of E that has positive Lebesgue

measure to a set that has zero Lebesgue measure. Let g : V → R be a simple

function. Then the image of g is finite and we have that g(x) =
∑n

i=1 viχYi
(x)
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where Yi is the set of points on which the function g takes the value vi. We have

that ∫
gdµ =

n∑
i=1

viµ(Yi).

Since the function h is a bijection we have that g ◦ h : U → R is a simple function

that can be written as
∑n

i=1 viχh−1(Yi). This implies that∫
g ◦ hdν =

n∑
i=1

viν(h
−1(Yi)) =

n∑
i=1

viµ(Yi).

Therefore ∫
V

gdµ =

∫
U

g ◦ hdν.

Since ν is a finite signed measure and assuming it is absolutely continuous The

Radon-Nikodym Theorem implies there exists a set of measure zero Z and a function

f : U − Z → R such that ∫
U

g ◦ hdν =

∫
U−Z

(g ◦ h)fdµ.

Therefore ∫
V

gdµ =

∫
U−Z

(g ◦ h)fdµ.

What we have done is successfully changed the domain of integration. This is called

The Change of Variables Formula. It is possible to write down an explicit formula

for f in terms of the function h.

Recall that f(x) is defined as the largest number t such that the largest set

Et where (ν − tµ)|Et
is positive contains the point x. In this case we have that

ν = µ◦h. It turns out that f(x) is given by the absolute value of the determinate of

the derivative of h evaluated at the point x. So The Change of Variables Formula

is ∫
V

gdµ =

∫
U−Z

(g ◦ h)|det(Dh(x))|dµ.

25. THE RADON-NIKODYM THEOREM AND THE DUAL OF LP

Let’s return to the task of trying to understand the dual space of Lp(E). Recall

that the set Lp(E) is the set of functions f : E → R (where E is a measurable

subset of Rn) that have finite Lp norm. The Lp norm is defined by the formula(∫
|f |p

) 1
p . We have previously shown that Lp(E) with this norm is a Banach space

which means that it is a normed vector space that is complete. Recall that the dual

of Lp(E) denoted Lp(E)∗ is the set of linear and bounded functions λ : Lp(E) → R.

Recall that a linear function λ : LP (E) → R is bounded if there exists a number

C such that |λ(f)| ≤ C∥f∥Lp for all f in Lp(E) (recall that this definition was

motivated by Lipschitz continuity and in fact a linear function is bounded if and
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only if it is continuous). The smallest number C that works in this inequality defines

the operator norm which is the norm we use on the dual of Lp(E). The operator

norm of λ can also be expressed as the magnitude of the largest number that λ takes

on elements of Lp(E) with Lp norm 1. That is, ∥λ∥Lp∗ = sup{|λ(f)| : ∥f∥Lp = 1}.
Before we went and proved The Hahn-Decomposition Theorem and The Radon-

Nikodym Theorem we defined the idea of a finite signed measure and this was

motivated by the function that sends a measurable subset S of E to the number

λ(χS). Let’s get back to this. We will assume that the Lebesgue measure of E is

finite.

Call this function ν. I claim that ν is a finite signed measure and that ν is

absolutely continuous with respect to µ. To see this note that λ is bounded so

there exists a number C such that for all measurable subsets S of E we have that

|ν(S)| = |λ(χS)| ≤ C∥χS∥Lp = C

(∫
χp
S

) 1
p

= µ(S)
1
p .

So ν satisfies the ’finite’ part of being a finite signed measure. Note that this

inequality also implies ν is absolutely continuous with respect to µ (that is, ν(S) = 0

whenever µ(S) = 0) To show that ν is a finite signed measure we just need to show

that it is countably additive. Let S1, S2, ... be disjoint measurable subsets of E.

We want to show that ν(S1 ∪ S2 ∪ ...) = ν(S1) + ν(S2) + .... That is we want to

show that λ(χ⋃∞
i=1 Si

) = limn λ(χ⋃n
i=1 Si

). Since λ is bounded it is continuous so

we have that the right hand side of this is equal to λ(limn χ⋃n
i=1 Si

). If we can

show that limn χ⋃n
i=1 Si

converges to χ⋃∞
i=1 Si

we will be done. But we have to be a

bit careful here. Remember our purpose. We will eventually want to approximate

general functions in Lp(E) by simple functions. The notion of convergence in

which we will approximate these functions is given by the Lp norm. We would use

pointwise convergence if we wanted to approximate the functions pointwise. It is

not completely clear to me why we are not doing this yet. In any case we have that

∥χ⋃∞
i=1 Si

− χ⋃n
i=1 Si

∥Lp = ∥

χ⋃
i>n Si

∥Lp = µ(∪i>nSi)
1
p .

By the continuity of Lebesgue measure and the fact that E has finite measure we

know that as n tends to infinity the Lebesgue measure of
⋃

i>n Si tends to zero.

Therefore χ⋃n
i=1 Si

converges to χ⋃∞
i=1 Si

in terms of the Lp norm as n tends to

infinity. So we have shown that ν is a finite signed measure and that it is absolutely

continuous with respect to Lebesgue measure.

What does The Radon-Nikodym Theorem tell us about the relationship between

ν and Lebesgue measure. It tells us that there exists a set Z of Lebesgue measure
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zero and a measurable function f : E − Z → R such that for each measurable

subset S of E we have ν(S) =
∫
χSfdµ. That is, λ(χS) =

∫
χSfdµ.

Let g : E → R be a simple function with image {v1, v2, ..., vk} on the sets

Y1, Y2, ..., Yk. Then by the linearity of λ we have that

λ(g) =

k∑
i=1

viλ(χYi
) =

k∑
i=1

vi

∫
χSi

fdµ =

∫
gfdµ.

So knowing the function f tells us what λ does on simple functions. Can we now

approximate any element of Lp(E) by a sequence of simple functions and get a

similar formula? That will be true if the function on Lp(E) that maps g to
∫
gfdµ

is continuous. That is, if g1, g2, ... is a sequence of functions in Lp(E) converging to

g then does the sequence of numbers
∫
g1fdµ,

∫
g2fdµ, ... converge to

∫
gfdµ? A

sufficient condition for this when p > 1 is that f belong to Lq(E) where 1
p +

1
q = 1.

The reason is that in this case Holder’s inequality applies (recall that Holder’s

inequality says that whenever p and q are numbers larger than one such that 1
p+

1
q =

1 and g belong to Lp(E) and f belongs to Lq(E), then
∫
gfdµ ≤ ∥g∥Lp∥f∥Lq ). We

then have that ∫
(g − gi)fdµ ≤ ∥g − gi∥Lp∥f∥Lq

and the right hand side converges to zero as n tends to infinity.

Let’s try to show that f belongs to Lq(E). We know that f is a measurable

function. To show that it is an element of Lq(E) we just need to show that its Lq

norm is finite. That is, we need to show that
(∫

|f |q
) 1

q <∞.

Recall that a definition of
∫
|f |q is the supremum of the collection of numbers∫

hq where h is a simple function such that 0 ≤ h ≤ |f |. We then have that∫
hq =

∫
hq−1g ≤

∫
hq−1|f | =

∫
hq−1 ± f

where the sign ± is meant to mean that the sign of f may vary from point to point.

But recall that since h is a simple function it is certainly in Lp(E) and so the right

hand side is just the value our linear function λ takes at ±hq−1 where the sign is

a plus when f is positive and a minus when f is negative (this will also belong to

Lp(E)). And remember that λ is bounded. Therefore we have that∫
hq ≤ λ(±hq−1) ≤ ∥λ∥Lp∗∥ ± hq−1∥Lp = ∥λ∥Lp∗

(∫
h(q−1)p

) 1
p

.

Notice that (q − 1)p = q so the inequality can be rewritten as
(∫
hq
) 1

q ≤ ∥λ∥Lp∗ .

Now let h1, h2, ... be a sequence of simple functions converging to |f | and such

that 0 ≤ |h| ≤ f . By The Dominated Convergence Theorem and the continuity of

raising an expression to a power of 1
q we have that

(∫
hqi
) 1

q converges to
(∫

|f |q
) 1

q .

Therefore
(∫

|f |q
) 1

q ≤ ∥λ∥Lp∗ which shows that f is an element of Lq(E). Therefore
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the map from Lp(E) to the real numbers defined by the formula g 7→
∫
gfdµ is

continuous. Therefore, if g1, g2, ... is a sequence of simple functions converging to

the function g in the Lp norm then the sequence of numbers
∫
g1fdµ,

∫
g2fdµ, ...

converges to
∫
gfdµ. This shows that if g belongs to Lp(E), then λ(g) =

∫
gfdµ.

So the function f which is an element of Lq(E) completely defines the function λ

which is an element of Lp(E)∗. This gives us an interesting relationship between

the dual space Lp(E)∗ and Lq(E).

Our conclusion is that every bounded linear function λ : Lp(E) → R is given by

λ(g) =
∫
gf for some f ∈ Lq(E) where 1

p + 1
q = 1.

Consider the map from Lq(E) to Lp(E)∗ defined by the formula f 7→
∫
·f . The

above shows that this map is a surjection. We also have that the inverse map is

an isometry because ∥f∥Lq = ∥λ∥Lp∗ . We have shown above that ∥f∥Lq ≤ ∥g∥Lp∗ .

Let’s show that equality holds. Recall that ∥λ∥Lp∗ = sup{|λ(g)| : ∥g∥Lp = 1}. We

want to find a function g in Lq(E) such that
∫
gf = ∥f∥Lq . It can be shown that

this will be the case then |g| = λ|f |
p
q where λ is a constant. Therefore the inverse

map is an isometry from Lp(E)∗ to Lq(E).

What can we say when p = 1. We can’t use Holder’s inequality in this case.

Hopefully the same thing will hold though. Let’s claim that ∥f∥Lq ≤ ∥λ∥Lp∗ .

Consider the set S = {x ∈ E : f(x) > ∥λ∥Lp∗}. Then since λ is bounded we have

that

∥λ∥Lp∗µ(E) ≤
∫
χSf = λ(χS) ≤ ∥λ∥µ(S).

If µ(S) ̸= 0, then the first inequality is strict. So it must be that µ(S) = 0.

Therefore ∥f∥Lp ≤ ∥λ∥Lp∗ almost everywhere. And this is enough to show λ(g) =∫
gfdµ for any g belonging to Lp(E).

26. THE BAIRE CATEGORY THEOREM

Let X be a metric space. Let Y be a subset of X. The set Y is closed if y

belongs to Y whenever y1, y2, ... is a sequence of points in Y that converges to y.

The closure Ȳ of Y is the smallest closed set containing Y . The set Y is called

dense if its closure is equal to X. That is, Y is dense if Ȳ = X.

For example, let E be a measurable subset of Rn. Let X be the set of measurable

real valued functions on E. Let Y be the set of simple functions on E. We have

previously shown that any measurable function f : E → R can be written as the

limit of simple functions. Therefore Y is not a closed set. But Y is dense because

Ȳ = X. Now let X = Lp(E). Then Y is a subset of X. By the same logic Y is not

closed but it is dense since any function f ∈ Lp(E) can be written as the limit of a

sequence of simple functions. Since this sequence of simple functions must belong
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to any closed set containing Y its limit f belongs to every closed set containing Y

and hence f belongs to the closure of Y .

Let X be a metric space. If a subset Y of X is closed, then the set X − Y is

called open. An open subset Z of X may also be defined as follows: for each point

z in Z there exists an ϵ > 0 such that the set Bϵ(z) = {x ∈ Z : d(x, z) < ϵ} (called

an open ball) is a subset of Z.

We would like to determine conditions under which the intersection of dense sets

is a dense set. It seems plausible that this could be true since dense sets are in a

sense large sets. Let’s try to think of some counterexamples.

Counterexample 1: Let X be the real numbers. Then the rational numbers Q

and the rational numbers translated by the square root of two Q+ {
√
2} are both

dense sets in X. But since they are disjoint their intersection is the? which is not

dense in X (the empty set is a closed set and so is its own closure).

Let’s rule this out by assuming each of our dense sets is an open set.

Counterexample 2: Let X be the rational numbers Q = {q1, q2, ...}. Let U1 =

Q − {q1}, U2 = Q − {q2}, · · · and so on. Each of these sets is dense. But their

intersection is empty and the empty set is not dense here.

Let’s rule this out by assuming that the metric space X is complete (that is, a

metric space in which all Cauchy sequences converge).

It turns out that with these two conditions the intersection of countably many

dense sets will also be dense. This result is called The Baire Category Theorem.

Theorem: (The Baire Category Theorem) Let X be a complete metric space. If

U1, U2, ... are dense open sets in X, then
⋂

i Ui is dense in X.

It is possible to show that a subset Y of a metric space X is dense if and only if

Y has a nonempty intersection with every nonempty open subset U of X and this

is true if and only if Y has a nonempty intersection with every open ball Bϵ(x) for

each x ∈ X and each ϵ > 0.

Let’s use this to prove The Baire Category Theorem.

Proof of The Baire Category Theorem: Let x0 be a point in X and ϵ1 > 0. Let’s

show there is a point y in Bϵ1(x) such that y ∈ U1 ∩ U2 ∩ ....
Since U1 is dense there exists a point x1 that is in both U1 and B ϵ1

2
(x0). Since

B ϵ1
2
(x0) ∩ U1 is open there exists a number ϵ2 > 0 such that Bϵ2(x1) is a subset of

B ϵ1
2
(x0) ∩ U1.

Now repeat the process with U2. That is, since U2 is dense there exists a point

x2 that is in both U2 and B ϵ2
2
(x1). Since B ϵ2

2
(x1)∩U2 is open there exists a number

ϵ3 > 0 such that Bϵ3(x2) is a subset of B ϵ2
2
(x1) ∩ U2.

Doing this forever creates a sequence x1, x2, ... of points such that

x1 ∈ B ϵ1
2
(x0) ∩ U1, x2 ∈ B ϵ2

2
(x1) ∩ U2, ...
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where

B ϵ1
2
(x0) ∩ U1 ⊇ Bϵ2(x1) ⊇ B ϵ2

2
(x1) ∩ U2 ⊇ Bϵ3(x2), ...

Note that for each i we have that

B ϵi
2
(xi−1) ∩ Ui ⊇ closure(B ϵi+1

2
(xi) ∩ Ui+1) ⊇ B ϵi+1

2
(xi) ∩ Ui+1.

The sequence x1, x2, ... is clearly a Cauchy sequence because ϵi+1 ≤ ϵi
2 . For some

δ > 0 if you want d(xn, xm) < δ then just choose N such that ϵN < δ. Then

n,m ≥ N implies that xn, xm belong to B ϵN
2
(xN−1) so that d(xn, xm) < ϵN < δ.

That is, the sequence x1, x2, ... is a Cauchy sequence.

Since X is complete there is a point y in X such that limi xi = y. For each i the

sequence x1, x2, ... is eventually in closure(B ϵi+1
2

(xi)∩Ui+1) and so y is eventually in

this set. But this implies that for each i the point y is in B ϵi
2
(xi−1)∩Ui. Therefore

y belongs to Bϵ0(x0) and y belongs to U1?U2?.... So
⋂

i Ui is dense.

QED

27. THE OPEN MAPPING THEOREM

The word isomorphism means equal shape. A set X with some structure SX

and a set Y with some structure SY have the same shape if there is a bijection

between X and Y that also gives a bijection between the interactions elements of

X under structure SX and the interactions of the elements of Y under structure

SY . Everything you can do in language Y can be translated into language X and

everything you do in language X can be translated into language Y and these

translations agree going back and forward.

For example if we just had the sets X and Y then saying they are isomorphic

means that they have the same number of elements. If in addition we had an binary

relation RX on X and a binary relation RY on Y then we could say X and Y are

isomorphic if there is a bijection F between X and Y such that (x1, x2) ∈ RX

if and only if (f(x1), f(x2)) ∈ RY . If X and Y are vector spaces then we could

say that they are isomorphic if there is a bijection F between X and Y such that

x1 + x2 = x3 if and only if F (x1) + F (x2) = F (x3) and αx1 = x2 if and only if

αF (x1) = F (x2) (that is, F is a linear function). If X and Y are topological spaces

then we would say they are isomorphic if there exists a bijection F between X and

Y such that F is also a bijection between the open sets of X and the open sets of

Y such that X1 ∩X2 = X3 if and only if F (X1)∩F (X2) = F (X3) and
⋃
Xα = X1

if and only if
⋃
F (Xα) = F (X1) (these conditions follow automatically from the

properties of a bijective function).

What if X and Y are Banach spaces? A Banach space has the structure of both

a topological space and a vector space. It also has the structure of a norm. We

might say that two Banach spaces are isomorphic if there is a bijection F from
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X to Y such that F is an isomorphism of the vector spaces X and Y , F is an

isomorphism of the topological spaces X and Y , and F is an isomorphism of the

norms of X and Y . What might it mean for F to be an isomorphism of the norms

of X and Y ? It means that ∥x∥X = c if and only if ∥F (x)∥Y = c. It turns out this

condition implies that F is an isomorphism of the topological spaces X and Y .

Let’s try to understand isomorphisms vector spaces that are also isomorphisms

of topological spaces. We will prove a theorem about these isomorphisms related to

Banach spaces. We will show that if X and Y are Banach spaces and if F : X → Y

is an isomorphism of vector spaces that is continuous and surjective, then F is also

an isomorphism of topological spaces. This result is known as The Open Mapping

Theorem.

The Open Mapping Theorem: If F : X → Y is an isomorphism of vector spaces

(that is, a linear function) that is continuous and surjective, then F is an isomor-

phism of topological spaces.

The function F is an isomorphism of topological spaces V and W if F gives a

bijection between the open sets of V and W . One definition of F being continuous

is that F−1(A) is an open subset of V whenever A is an open subset of W . This

shows that any open set inW is associated with an open set in V . We want to show

that this map is a bijection. Since F is injective and surjective the map F−1 that

associates open subsets of W with open subsets of V is map is injective. Is the map

surjective? That is, if B is an open subset of V does there exist an open subset A of

W such that F−1(A) = B? This is equivalent to saying that if B is an open subset

of V then does there exist an open subset A of W such that F (B) = A? That

is, if B is an open subset of V is F (B) an open subset of W? So what the Open

mapping theorem is saying is if F : X → Y is an isomorphism of vector spaces that

is continuous then F (B) is an open subset of Y whenever B is an open subset of

X.

Let’s prove The Open Mapping Theorem. First of all let’s make a simplification.

Suppose we could prove the theorem for a function F whose operator norm was

equal to 1. That is, an F such that the smallest number C such that ∥F (x)∥Y ≤
C∥x∥X for all x in X is 1. Suppose then we wanted to prove the theorem for an

F with an arbitrary operator norm? Since F is a linear and continuous there exits

a number C which is the smallest number such that ∥F (x)∥Y ≤ C∥x∥X for all x

in X. If this number C is zero then F is the zero function. Since F is assumed

to be surjective it must be that Y is a singleton. Since Y is an open set and any

nonempty subset B of X gets mapped to Y which is an open set (and the empty

set gets mapped to the empty set, another open subset of Y ) we have that F is

open.
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If C is not equal to zero we can consider the function 1
CF . The operator norm

for this function is equal to 1 so we can apply the theorem and we then have

that if B is an open subset of X then 1
CF (B) = A is an open subset of Y . Is

the set F (B) = CA an open subset of Y . It is easy to show that it is. The set

CA = {y ∈ Y : y = Ca for some a ∈ A}. To show that CA is open we need to

show that if y is a point of CA then there exists a positive number ϵ such that the

open ball of radius ϵ around y, that is the set Bϵ(y) = {z ∈ Y : ∥y− z∥Y < ϵ} , is a

subset of CA. Since y belongs to CA there exists a point a in A such that y = Ca.

Since A is open there exists a positive number ϵ such such that Bϵ(a) is a subset

of A. I claim that BCϵ(y) is a subset of CA.

So let z belong to BCϵ(y). Then ∥y−z∥X < Cϵ. Dividing by C gives ∥a− z
C ∥ < ϵ.

Therefore z
C belongs to Bϵ(a) and hence belongs to A. This implies that z = C z

C

belongs to CA. Therefore BCϵ(y) is a subset of CA. This shows that CA is an

open subset of Y . The point is that if we can prove The Open Mapping Theorem

when the operator norm of F is equal to 1 then we have proved The Open Mapping

Theorem. Since it will probably make it easier to prove the theorem let’s assume

that the operator norm of F is equal to 1.

Let B be an open subset of X. We want to show that F (B) is an open subset

of X. One way to do this is to show that for each point y in F (B) there exists a

positive number ϵ such that the open ball Bϵ(y) is a subset of F (B).

Let x be a point in B. Since B is open there exists a positive number ϵ′ such

that Bϵ′(x) is a subset of B. Suppose we could find a positive number ϵ such

that Bϵ(0Y ) is a subset of F (Bϵ′(0X)). Since F is continuous we then have that

F−1(Bϵ(0Y )) ∩ Bϵ′(0X) (Call this set A) is an open subset of Bϵ′(0X) that maps

under F to Bϵ(0Y ). Then we have that F (A + {x}) = F (A) + F (x) is an open

subset of F (B) containing F (x). This will show that F (B) is open in Y .

Let’s do one more simplification. Suppose we could prove this when ϵ′ is equal

to 1. That is, suppose we could find an ϵ > 0 such that Bϵ(0Y ) is a subset of

F (B1(0X)). This is the same as saying that ϵ′Bϵ′(0Y ) is a subset of ϵ
′F (B1(0X)). By

the linearity of F this is the same as saying that Bϵ′ϵ(0Y ) is a subset of F (Bϵ′(0X)),

which is what we want. So we only need to prove the result for when ϵ′ = 1.

Let me now restate The Open Mapping Theorem and what we have to show.

The open mapping theorem says that if F : X → Y is a map between Banach

spaces and is an isomorphism of vector spaces that is surjective and continuous

then it is an isomorphism of topological spaces.

To finish the proof of this theorem we need to show that there exists a positive

number ϵ such that F (B1(0X)) is a subset of Bϵ(0Y ) where the F here has an

operator norm equal to 1.
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Now consider the open balls B1(0X), B2(0X), .... The union of these open balls

is X. Since F is surjective
⋃∞

i=1 F (Bi(0X)) = Y . This implies that
⋂
(Y −

closure[F (Bi(0X)]) = ∅.
Recall The Baire Category Theorem. The Baire Category Theorem says that in

a complete metric space the countable intersection of dense and open sets is also

dense. Since X is a Banach space it is a complete metric space. Since the empty

set is not dense in Y and each of the sets Y − closure[F (Bi)(0X)] is open (this is

why we took the closure) The Baire Category Theorem implies that for some n

the set Y − closure[F (Bn(0X))] is not dense in Y . This means that there exists an

ϵ > 0 and a point x in X such that the open ball Bϵ(x) does not intersect the set

Y − closure[F (Bn(0X))]. This means that Bϵ(x) is a subset of closure[F (Bn(0X))].

The argument above for why we could let ϵ′ = 1 shows that we can also assume

that n = 1.

There are two obstacles to complete the proof. Obstacle number one is that the

ball Bϵ(x) is centered at x and x may not be equal to 0Y as we want. Obstacle

number two is that this open ball is a subset of the closure of F (B1(0X)) and we

want our the final open ball to e a subset of B1(0X).

Suppose that y is a point in Y such that ∥y∥Y < ϵ. Then x + y and x − y

belong to Bϵ(x) so they are also in closure[F (B1(0X))]. This implies that for any

positive number δ such that ϵ > δ there exists points v and w in B1(0X) such that

∥(x+ y)−F (v)∥Y < δand∥(x− y)−F (w)∥ < δ. By the triangle inequality we also

have that ∥F (w − v) − 2y∥Y < 2δ which implies that ∥F (w−v
2 ) − y∥ < δ. Since

B1(0X) is convex we have that w−v
2 belongs to B1(0X).

So we have just shown that if y belongs to Bϵ(0Y ) then for any δ > 0 we can

choose z in B1(0X) such that ∥F (z)− y∥Y < δ.

Let’s take δ equal to ϵ2 (suppose ϵ < 1). Then we can find a point z in B1(0X)

such that ∥y−F (z)∥Y < ϵ2. This implies that ∥y−F (z)
ϵ ∥Y < ϵ so we can find a point

z′ such that ∥y−F (z)
ϵ −F (z′)∥Y < ϵ3. This implies that ∥y−F (z)− ϵF (z′)∥Y < ϵ2.

It also implies that ∥y−F (z)−ϵF (z′)
ϵ ∥Y < ϵ. Therefore there exists a point z′′ in

B1(0X) such that ∥y−F (z)−ϵF (z′)
ϵ − F (z′′)∥Y < ϵ4. This implies that ∥y − F (z) −

ϵF (z′) − ϵ2F (z′′)∥Y < ϵ3. We can continue this process so that we get a sequence

of points F (z), F (z)− ϵF (z′), F (z)− ϵF (z′)− ϵ2F (z′′), .... This sequence converges

to y.

Because F is linear this implies that F (z + ϵz′ + ϵ2z′′ + ...) = y. Let ẑ denote

the point z + ϵz′ + ϵ2z′′ + .... We have that ∥ẑ∥X ≤ 1
1−ϵ . We should have chosen

the epsilons in the previous paragraph more carefully so that this is less than one.

Then we would have shown that Bϵ(0Y ) is a subset of F (B1(0x)). This is unclear

and correct.
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28. SETS WITH THE SAME SHAPE

Let X be a set with language SX and let Y be a set with language SY . Why

is is useful to know whether (X,SX) is isomorphic to (Y, SY )? I think it is be-

cause problems in (X,SX) can be posed in (Y, SY ), solved there and the solutions

translated back to (X,SX).

Here is an example. Let f : (0,∞) → R be the the natural logarithm. This is a

bijection from Rto(0,∞). It translates any statement x1 ·x2 = x3 to the statement

log(x1) + log(x2) = log(x3) and it translates this statement back to x1 · x2 = x3.

If we know how to solve the statement x1 ·x2 = x3 for some positive real numbers

x1, x2 and x3 then we can also solve the statement y1 + y2 = y3 whenever y1 =

log(x1), y2 = log(x2), andy3 = log(x3). This is because f is injective.

If we know how to solve the statement y1+y2 = y3 for some real numbers y1, y2,

and y3 then we can solve the statement x1 · x2 = x3 whenever x1 = ey1 , x2 = ey2 ,

and x3 = ey3 . This is because the inverse is injective.

Note that not any bijection will work. For instance suppose that g : (0,∞) → R

is a bijection. Let’s try to translate the statement x1 · x2 = x3 where x1, x2, and

x3 are positive real numbers. Let y1 = g(x1), y2 = g(x2), and y3 = g(x3). We have

that g(x1) · g(x2) = g(x3).

Suppose we only know how to solve statements of the form z1 + z2 = z3 when

z1, z2, and z3 are real numbers. The function g helps us solve the equation x1 ·x2 =

x3 if and only if g(x1) + g(x2) = g(x3).

What is an example of this? Suppose g is defined by g(x) =
√
x. Let’s try to

solve e · π = x for x. Suppose we know how to solve all equations of the form

z1+ z2 = z3 whenever z1, z2, and z3 are positive real numbers. This knowledge and

the knowledge of g does not help us solve the equation e · π = x because g does

not satisfy the property that g(x1) + g(x2) = g(x1 · x2) whenever x1, x2 and x3 are

positive real numbers. But if we use the function f defined by f(x) = log(x) then

we have log(e) + log(π) = log(x) and we know how to solve this equation so that

we know log(x) and from this we know x.

29. AXIOMS FOR TH LOGARITHMIC FUNCTION

Let f : (0,∞) → R be a bijection such that for all x1, x2, x3 in (0,∞) it is true

that x1 · x2 = x3 if and only if f(x1) + f(x2) = f(x3). We have seen that any

logarithmic function f (i.e. a function f defined by the rule f(x) = logb(x) where

b > 0) is such a function.

A natural question to ask is whether f must be a logarithmic function. Are

the above properties for f : (0,∞) → R just another way of saying that f is a

logarithmic function? That is, are the properties
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(1) f : (0,∞) → R, (2) fisabijection, (3) for all x1, x2, x3 in (0,∞) it is true

that x1 · x2 = x3 if and only if f(x1) + f(x2) = f(x3),

axioms for the logarithmic function?

Another way to state property number (3) is: for all x1, x2, x3 in (0,∞) it is true

that f(x1 · x2) = f(x1) + f(x2).

Let’s rearrange the problem slightly.

Do the properties

(1) g : R → (0,∞), (2) g is a bijection, (3) for all y1, y2, y3 in R it is true that

y1 + y2 = y3 if and only if g(y1) · g(y2) = g(y3)

imply that g is defined by the rule g(y) = by for some real number b > 0?

Another way to state property number 3 is:

(3’) for all y1, y2, y3 in R it is true that g(y1 + y2) = g(y1) · g(y2).
What is the value of g at 0? By property (3’) we have g(0 + 0) = g(0) · g(0)

which implies that g(0) = 1.

Let’s denote g(1) by b. Then we have g(n) = bn whenever n is a nonnegative

integer. We have that g(n− 2n) = g(n)g(−2n) so g(−n)
g(−n)·g(−n) = bn so g(−n) = 1

bn .

Let n be a nonzero integer. We have

g(
1

n
)...g(

1

n
)︸ ︷︷ ︸

n times

= g(1) = b.

Therefore g( 1n ) = b
1
n .

Let m also be a non-zero integer. We have

g(
m

n
) = g(

1

n
)...g(

1

n
)︸ ︷︷ ︸

m times

= (b
1
n )m = b

m
n .

Since the map that takes the real number x to the number bx is continuous and any

real number can be written as the limit of rational numbers we have that g(x) = bx.

That is,

g(x) = lim
i
g(
mi

ni
) = lim

i
b

mi
ni = bx.

whenever m1

n1
, m2

n2
, ... is a sequence of rational numbers whose limit is x.

g(1) = b is non-negative because by property number 1 g takes values in the

positive real numbers. g(1) = b is not equal to 0 because by property number 2 g

is a surjection.

30. RELATIVES OF THE OPEN MAPPING THEOREM

Theorem 1:
√
2 is an irrational number.

Theorem 2: There are infinitely many prime numbers.
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Both these theorems are true but they are not close relatives. You can’t prove

one easily from the other.

Theorem 3:
√
2 + 1 is an irrational number.

Theorem 1 and 3 are relatives. Theorem 3 can be easily proved using Theorem

1 and Theorem 1 can be easily proved using Theorem 3.

Theorem 4: Every number can be uniquely written as the product of prime

numbers.

Theorem 2 and 4 are also relatives. But they are relatives in a different way that

Theorem 1 and 3 are relatives. Theorem 2 can be proved by applying Theorem 4.

I don’t think Theorem 4 can be proved easily from Theorem 2.

Recall The Open Mapping Theorem: If F : V →W is a bounded linear surjection

of Banach spaces, then F is open (i.e. if U is an open subset of V , then F (U) is an

open subset of W ).

A close relative of this theorem is the following:

Theorem 1: If F : V → W is a bounded linear bijection of Banach spaces, then

F−1 is continuous.

This theorem follows directly from The Open Mapping Theorem when F is a

bijection. The Open Mapping Theorem also follows from this theorem.

Let F : V →W be a bounded linear surjection of Banach spaces. Let’s partition

V by where F sends its elements. That is, define a relation ∼ by saying that for

two elements v1, v2 ∈ V we have v1 ∼ v2 if and only if F (v1) = F (v2). This relation

partitions V (the relation is an equivalence relation). If v is an element of V denote

the equivalence class that corresponds to v by v̄. It can be shown that v1 ∼ v2 if and

only if there is an element v in the kernel of F such that v1 = v2 + v. (v = v1 − v2

works and if there exists an element v in the kernel of F such that v1 = v2+ v then

F (v1) = F (v2 + v) = F (v2) so that v1 ∼ v2.) The partition of V is denoted by

V/ ker(F ).

Define the map F̄ : V/ ker(F ) → W by saying that F̄ (v̄) = F (v). It is possible

to show that the set V/ ker(F ) with the norm defined by

∥v̄∥V/ ker(F ) = inf{∥x∥V : x ∈ v̄}

is a Banach space. Therefore F̄ : V/ ker(F ) →W is a bounded linear bijection of the

Banach spaces V/ ker(F )andW . Theorem 1 then implies that F̄−1 is continuous.

Consider the map π : V → V/ ker(F ) that takes an element v to its equivalent

class v̄. That is, π is defined by the equation π(v) = v̄. It is possible to show that

π−1 is continuous. We then have that F = π ◦ F̄ . It is possible to show that π is

open. So if U is an open subset of V , the F (U) is an open subset of W because

F (U) = π(F̄ (U)). This proves The Open Mapping Theorem.
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The Open Mapping Theorem implies Theorem 1 without much thinking. Show-

ing that Theorem 1 implies The Open Mapping Theorem requires much more think-

ing.

Let’s apply Theorem 1. Let f : X → Y be a function of metric spaces. One

way to represent f is as a set Γ(f) of ordered pairs (x, y) such that f(x) = y and

y1 = y2 whenever (x, y1) and (x, y2) belong to the set. Sometimes the set Γ(f) is

called the graph of f .

One way to say that f is continuous is that if x1, x2, ... is a sequence in X which

converges to x then the sequence f(x1), f(x2), ... converges to f(x).

What does continuity imply about the graph of f . One thing it implies is that

the graph of f is a closed set. That is, if (x1, y2), (x2, y2), ... is a sequence in

Γ(f) which converges to (x, y), then the point (x, y) belongs to Γ(f). You can

see that this is true: since x1, x2, ... is a sequence in X which converges to x,

then the sequence f(x1), f(x2), ... converges to f(x). Since f is a function we have

that y1 = f(x1), y2 = f(x2), and so on. This implies that the sequence y1, y2, ...

converges to f(x) so that f(x) = y. That is, (x, y) belongs to Γ(f).

The converse is not always true. It is true if Y is compact (compact means that

if y1, y2, ... is a sequence in Y then it has a subsequence yn1 , yn2 , ... that converges

to a point y in Y .)

It is also true if both X and Y are Banach spaces and f is a linear function.

This second statement is called The Closed Graph Theorem. As well as stating

The Closed Graph Theorem we can also prove it.

The Closed Graph Theorem: If F : X → Y is a linear map of Banach spaces,

then F is continuous if and only if Γ(F ) is closed.

Proof: We have already shown that if F is continuous then Γ(F ) is closed.

Conversely, assume that Γ(F ) is closed. Consider the set X × Y with (what we

would like to be a) norm ∥(x, y)∥ = ∥x∥X + ∥y∥Y . It can be shown that this is a

Banach space whenever X and Y are Banach spaces (which we are assuming them

to be). Because Γ(F ) is closed it is also a Banach space with this norm.

Consider the projection map F1 : Γ(F ) → X defined by F1(x, y) = x and

F2 : Γ(F ) → Y defined by F2(x, y) = y. These are linear maps of Banach spaces.

It is easy to see these maps are continuous (or what is the same thing bounded).

The function F1 is a bijection. Therefore by Theorem 1 its inverse F−1
1 is con-

tinuous. But we can write F = F2 ◦ F−1
1 . Therefore F is a continuous function

because it is the composition of two continuous functions. QED

So from Theorem 1 we can without much thinking prove The Closed Graph

Theorem. Is the reverse true? Let’s try to prove Theorem 1 again but this time

using The Closed Graph Theorem.
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Theorem 1: If F : X → Y is a bounded linear bijection of Banach spaces, then

F−1 is continuous.

Proof: Since F is linear being bounded is the same as being continuous. There-

fore F is continuous. By The Closed Graph Theorem this is the same as hav-

ing a closed graph. Therefore F has a closed graph. Since F is a bijection

Γ(F ) = Γ(F−1). So F−1 has a closed graph which by The Closed Graph The-

orem is the same as being continuous. Therefore F−1 is continuous. QED

This shows that Theorem 1 follows without much thinking from The Closed

Graph Theorem.

What we have shown is that The Open Mapping Theorem, Theorem 1, and The

Closed Graph Theorem are close relatives. Each follows easily from the other.

31. AN APPLICATION OF THE CLOSED GRAPH THEOREM

Let V andW be Banach spaces. Recall that the dual space of V which is denoted

V ∗ is the set of bounded linear functions from V to R. Likewise, the dual space of

W which is denoted W ∗ is the set of bounded linear functions from W to R.

Suppose we have a function F : V →W and a function G :W ∗ → V ∗. Let’s say

that these two functions are adjoint if for all vectors v in V and for all functions λ

in W ∗ we have that (G(λ))(v) is equal to λ(F (v)).

An obvious guess for G is the function that maps each λ in W ∗ to the function

λ ◦ F . The problem is that the function F ◦ λ may not be an element of V ∗ for all

λ in W ∗.

One requirement is that F is a linear function. Suppose that F is not a linear

function. Then either there exists points v1 and v2 in V such that F (v1 + v2) ̸=
F (v1)+F (v2) or there exists a point v in V and a real number α such that F (αv) ̸=
αF (v). For the first case let

λ0 : span{F (v1 + v2), F (v1) + F (v2)} → R

be the linear function that takes the value 1 on F (v1 + v2) and the value 0 on

F (v1) + F (v2). By The Hahn-Banach Theorem there exists a linear function λ :

W → R that is an extension of λ0 (and such that the operator norm of λ0 is equal

to the operator norm of λ). But then we have that

λ ◦ F (v1 + v2) = 1 ̸= 0 = λ ◦ F (v1) + λ ◦ F (v2)

so that λ ◦ F is not a linear function. For the second case let

λ0 : span{F (αv), αF (v)} → R

be the linear function that takes the value 1 on F (αv) and the value 0 on αF (v).

By the Hahn-Banach Theorem there exists a linear function λ : W → R that is
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an extension of λ0 (and such that the operator norm of λ0 is equal to the operator

norm of λ). But then we have that

λ ◦ F (αv) = 1 ̸= 0 = λ ◦ αF (v) = αλ ◦ F (v)

so that λ ◦ F is not a linear function.

Suppose that F is a continuous function. Since F is linear this is the same as

saying that Fv is bounded. Then there exists a number C such that for all v in

V we have ∥F (v)∥W ≤ C∥v∥V . Since F is a linear function we have that λ ◦ F
is a linear function. To show that λ ◦ F belongs to V ∗ (and hence that the map

λ 7→ λ ◦ F is a map from W ∗ → V ∗) we only need to show it is bounded. Since λ

belongs to W ∗ it is a bounded linear map and so there exists a constant K such

that for all w in W we have |λ(w)| ≤ K∥w∥W . Let v belong to V . We have that

|λ ◦ F (v)| = |λ(F (v))| ≤ K∥F (v)∥W ≤ KC∥v∥V .

Therefore λ ◦ F is bounded and so an element of V ∗.

What we have just shown is that if F is a bounded linear map then it has an

adjoint and its adjoint is the map G :W ∗ → V ∗ that maps λ to λ ◦ F .
It should not be too surprising that a version of the converse is true: if F and

Gare adjoints then F is a bounded linear map.

We have already shown that F is linear. We will use The Closed Graph Theorem

to show that F is bounded (which is the same as continuous for a linear map).

Consider a point (v, w) in the graph of F . Then we have that F (v) = w. This

implies that λ(F (v)) = λ(w) and since F and G are adjoint it implies that λ(w) =

G(λ)(v). Now suppose that for all functions λ inW ∗ we had λ(w) = G(λ)(v). Since

F and G are adjoint we have that λ(w) = λ(F (v)) for all λ ∈ W ∗. By The Hahn-

Banach Theorem this implies that w = F (v). To see this suppose that w ̸= F (v).

Define the linear function λ0 : span{w,F (v)} → R that takes the value 1 on w and

the value 0 on F (v). By The Hahn-Banach Theorem there exists a linear function

λ : W → R that is an extension of λ0 and such that has the same operator norm

as λ0 (so that λ belongs to W ∗). But then we have that λ(w) ̸= 1 ̸= 0 = λ(F (v)).

So we have that (v, w) belongs to Γ(F ) if and only if λ(w) = (G(λ))(v) for all

λinW ∗. That is,

Γ(F ) =
⋂

λ∈W∗

{(v, w) : λ(w) = (G(λ))(v)}.

Because each λinW ∗ is continuous this is an intersection of closed sets. This inter-

section of closed sets is always a closed set. Therefore the graph of F is closed.

Now recall The Closed Graph Theorem: If F : V →W is a linear map of Banach

spaces then F is continuous if and only if the graph of F is closed.

By The Closed Graph Theorem F is continuous. Therefore F is bounded.
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So F : V →WandG :W ∗ → V ∗ are adjoint if and only if F is a bounded linear

map.

32. THE UNIFORM BOUNDEDNESS PRINCIPLE

Suppose that F1, F2, ... is a sequence of bounded linear functions from the Banach

space V to the Banach space W . What does it mean for this sequence to converge

to a linear function F : V →W?

One possibility is to use the norm ofW . That is, to consider for each point v in V

the sequence F1(v), F2(v), .... We would then say that the sequence F1, F2, ... con-

verges to the linear function F if for each point v in V the sequence F1(v), F2(v), ...

of points in W converges to F (v). That is, limn ∥Fn(v) − F (v)∥ = 0 for each v in

V . This is called pointwise convergence.

Another possibility is the use the operator norm (the norm on Hom(V,W )).

That is to say that the sequence F1, F2, ... converges to F if limn ∥Fn − F∥ (where

for G in Hom(V,W ) (that is, a bounded linear function G : V →W )∥G∥ is defined

to be the smallest number C such that ∥G(v)∥W ≤ C∥v∥V for all v in V ; this is the

same number as the largest value of ∥G(v)∥W for all v such that ∥v∥V = 1). This

is called operator norm convergence.

What is the relationship between pointwise convergence and operator norm con-

vergence?

We have that

∥Fn − F∥ = sup{∥Fn(v)− F (v)∥W : ∥v∥V = 1}.

Pointwise convergence means that limn ∥Fn(v) − F (v)∥W = 0 for all v in V . You

can see from the above equation that convergence in the operator norm implies

that limn ∥Fn(v)− F (v)∥W = 0 for each v such that ∥v∥V = 1. If u is an arbitrary

element of V let v = u
∥u∥V

. Then ∥v∥V = 1 so that limn ∥Fn(v)− F (v)∥ = 0. And

this implies that limn
1

∥u∥V
∥Fn(u) − F (u)∥ = 0 which implies that limn ∥Fn(u) −

F (u)∥ = 0.

The converse is not true: pointwise convergence does not imply convergence in

the operator norm. Here is an example that proves this to be so. Let V = L1(R)

and let W = R. Define the function Fi by the equation Fi(f) =
∫
fχ[i,i+1]. The

sequence of functions F1, F2, ... converges pointwise to zero. If it were not the

case then for each integer N we could choose an integer n such that
∫
|f |χ[0,n] ≥

N . The sequence of function is fχ[0,1], fχ[0,2], ... is a nondecreasing sequence of

nonnegative measurable functions. By the monotone convergence theorem
∫
|f | =

limn

∫
|f |χ[0,n] = ∞. Therefore f does not belong to L1(R). The sequence F1, F2, ...

does not converge to zero in the operator norm since
∣∣∫ fχ[i,i+1]

∣∣ = 1 whenever
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f = χ[i,i+1] and in this case ∥f∥L1 =
∫
|f | = 1. Therefore the operator norm of any

Fi is at least 1.

Note that convergence in the operator norm is only for bounded linear functions.

Not only must each term of the sequence be a bounded linear function but the

limit must be a bounded linear function. Pointwise convergence is well defined for

arbitrary functions.

Suppose that F1, F2, ... is a sequence of bounded linear functions from the Banach

space V to the Banach space W which converge pointwise to a function F .

Is F bounded?

We will show that the answer is ”yes”.

This follows from a theorem called The Uniform Boundedness Principle.

The Uniform Boundedness Principle: Suppose V and W are Banach spaces, and

we are given a set {Tα} of bounded linear functions such that for all v in V we

have that {Tα(v)} is bounded (that is, there exists a number N such that for each

α we have ∥Tα(v)∥W ≤ N). Then {Tα} is bounded (that is, there exists a number

C such that the operator norm ∥Tα∥ ≤ C for each α).

How does this imply that if F1, F2, ... is a sequence of bounded linear functions

converging pointwise to F then F is bounded. We have that for each v in V the set

{F1(v), F2(v), ...} is bounded (because this sequence converges). Therefore there

exists a number C such that the operator norm of each function Fi is at most C.

That is if v is such that ∥v∥V = 1, then ∥Fi(v)∥W ≤ C. Since F (v) = limi Fi(v)

and the norm on W is a continuous function we have that

∥F (v)∥W = ∥ lim
i
Fi(v)∥W = lim

i
∥Fi(v)∥W ≤ lim

i
C = C.

Therefore F is bounded.

How can we prove The Uniform Boundedness Principle? Let BN denote the

set {v ∈ V : ∥Tα(v)∥W ≤ N for all α}. Then V =
⋃∞

N=1BN . Each set BN is

closed because the norm on W is a continuous function and each Tα is a continuous

function. The sequence of sets B1, B2, ... is increasing. Recall The Baire Category

Theorem.

The Baire Category Theorem: Let X be a complete metric space. The union of

countably many nowhere dense subsets of X is not equal to X.

The Baire Category Theorem implies that for some N we have that BN is not

nowhere dense. That is, BN contains a nonempty open set. This implies there is a

point v in BN and a number ϵ > 0 such that Bϵ(v) ⊆ BN .

If w is a point in V such that ∥w∥V < ϵ, then the point v + w belongs to Bϵ(v)

and so to BN . This implies that ∥Tα(v + w)∥W ≤ N for all α. Therefore

∥Tα(w)∥W = ∥Tα(v + w)− Tα(v)∥W ≤ ∥Tα(v + w)∥W + ∥Tα(v)∥W ≤ 2N.
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This implies that for any w in V and for any α we have that

∥Tα(w)∥ ≤ 2N∥w∥V
ϵ′

where ϵ′ is any number such that 0 < ϵ′ < ϵ. This shows that {Tα} is bounded by
2N
ϵ′ . So ends the proof of The Uniform Boundedness Principle.

33. MOST CONTINUOUS FUNCTIONS ARE NOT DIFFERENTIABLE

ANYWHERE

Recall The Baire Category Theorem.

The Baire Category Theorem: Let X be a metric space. The intersection of

countably many dense open subsets of X is nonempty.

If you don’t remember a dense subset of X is a set whose intersection with any

nonempty subset of X is nonempty.

Therefore the complement of a dense subset of X has the property that it does

not contain any nonempty open subsets of X and conversely if a subset of X has

the property that it does not contain any nonempty open subsets of X then its

complement must be a dense subset of X.

A set is called nowhere dense if its closure does not contain any nonempty open

subsets of X. That is, a subset of X is nowhere dense if the complement of its

closure is a dense subset of X. This implies that an open set is dense if and only if

its complement is closed and nowhere dense.

Using this we can state a version of The Baire Category theorem: Let X be a

metric space. The union of countably many closed nowhere dense subsets of X is

not equal to X.

Let’s now make a definition of smallness for a subset of X. A subset Y of X

is called meagre if it is contained in the union of countably many closed nowhere

dense subsets of X.

Note that the interior of a nowhere dense subset of X is nowhere dense so if Y

is contained in the union of countably many nowhere dense subsets of X then it is

also contained in the the union of the closure of these sets and the closure of each

of these sets is nowhere dense. The reason for demanding in the definition that the

nowhere dense sets be closed I believe is so that we can easily apply our version of

The Baire Category Theorem.

The complement of a meagre set is called comeagre. A meagre set is small when

compared to X. Therefore a comeagre set is large when compared to X.

In Rn we also have a notion of a set being small. That notion is that the set has

Lebesgue measure zero.

Here is an example of a set with measure zero that is not meagre. The rational

numbers as a subset of R has Lebesgue measure zero but is not meagre. It is not



88 MEASURE, INTEGRATION, AND BANACH SPACES

meagre because it is a dense subset of R and therefore its closure is R and R

certainly contains open subsets of R.

Here is an example of a set with positive measure that is meagre. Consider the

sequence a1, a2, ... of real numbers such that the sum a1 + a2 + ... converges. Let

r1, r2, ... be an enumeration of the rational numbers. Let

A = (r1 − a1, r1 + a1) ∪ (r2 − a2, r2 + a2) ∪ ...

. By subadditivity of the Lebesgue measure the Lebesgue measure of A is no more

than 1
2 . That is:

µ(A) ≤ µ(r1 − a1, r1 + a1) + µ(r2 − a2, r2 + a2) + ... = 2(a1 + a2 + ...) <∞.

Therefore R − A has infinite Lebesgue measure. The set A is an open and dense

subset. Therefore R−A is closed and nowhere dense. Therefore R−A is meagre.

Even though a set being meagre does not imply that it has Lebesgue measure

zero and a set having Lebesgue measure zero does not imply it is meagre both ideas

still describe that a set is small. Therefore if we are given a set that satisfies one

condition it probably satisfies the other.

In 1872 Weierstrass published an example of a continuous function f : R → R

that is nowhere differentiable. Before Weierstrass’s discovery it was often assumed

that a continuous function is differentiable at most of the points in its domain.

Such a function is given by f(x) =
∑∞

n=1
1
2n cos(99nx). Let’s show that this

function is continuous and nowhere differentiable. Note for each n and x that∣∣ 1
2n cos(99nx)

∣∣ ≤ 1
2n . Therefore

∑∞
n=1

∣∣ 1
2n cos(99nx)

∣∣ converges. Since the real num-

bers are complete it is possible to show that this implies that the series
∑∞

n=1
1
2n cos(99nx)

converges to some number which we will call f(x). It turns out that this conver-

gence happens uniformly. That is, let ϵ > 0. Then there exists an integer K such

that for any x we have∣∣∣∣∣f(x)−
k∑

n=1

1

2n
cos(99nx)

∣∣∣∣∣ < ϵ whenever k ≥ K.

Let’s show this. Since
∑∞

n=1
1
2n converges to 1 there exists an integer K such that

k ≥ K implies that ∣∣∣∣∣1−
k∑

n=1

1

2n

∣∣∣∣∣ < ϵ.

We then have that∣∣∣∣∣f(x)−
k∑

n=1

1

2n
cos(99nx)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=k+1

1

2n
cos(99nx)

∣∣∣∣∣
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≤
∞∑

n=k+1

∣∣∣∣ 12n cos(99nx)

∣∣∣∣
≤

∣∣∣∣∣
∞∑

n=k+1

1

2n

∣∣∣∣∣ =∣∣∣∣∣1−
k∑

n=1

1

2n

∣∣∣∣∣ < ϵ.

This shows that the sequence of functions f1, f2, ... defined by fk(x) =
∑k

n=1
1
2n cos(99nx)

converges uniformly to f(x). Since each function fk is a linear combination of con-

tinuous functions it is itself continuous. It turns out that if a sequence of continuous

functions converges uniformly to another function then that other function must

be continuous. Therefore f is continuous.

I am not completely sure how to show that f is not differentiable at any point

in R. I think the strategy is the following: let x be a point in R. Because the

function f oscillates very very fast it is possible to find a sequences y1, y2, ... and

z1, z2, ... both in R both converging to x such that

lim inf
f(yn)− f(xn)

|yn − x|
> lim sup

f(zn)− f(z)

|zn − z|
.

This implies that the sequences cannot have the same limit which means that f is

not differentiable at the point x.

It turns out that Wierstrass’s example is not a special case. Most continuous

functions are not differentiable at any point in their domain. The way we will show

this is the following. Let C([0, 1]) be the set of real valued continuous functions

on [0, 1]. Let ∥ · ∥ be the supremum norm on this set. That is ∥f∥ = sup{f(x) :

x ∈ [0, 1]}. It is possible to show that C([0, 1]) with this norm is a Banach space.

Therefore we can think of C([0, 1]) as a complete metric space. What we will show

is that the set of functions in C([0, 1]) that are not differentiable at any point in

(0, 1) is comeagre. That is, the set of functions in C([0, 1]) that are differentiable

at at least one point of (0, 1) is a meagre set.

Note that this is much stronger than saying that the set of functions in C([0, 1])

that are differentiable at each point in (0, 1) is a meagre set. It is saying that the set

of nowhere differentiable functions (functions like the one Wierstrauss discovered)

is large in the sense that it is comeagre (its complement is a meagre set).

To do this let’s derive an implication of differentiability at a point in (0, 1) and

then show that the set of functions that have this property at a point in (0, 1) is

a closed nowhere dense set. This shows that the set of continuous functions that

are differentiable at at least one point in (0, 1) is a subset of a meagre set and so is

itself a meagre set.
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So let f : [0, 1] → R be a continuous function (i.e. an element of C([0, 1])) that

is differentiable at a point y in (0, 1). Then there exists an integer N such that

f ′(y) ≤ N . This implies that if z > y is sufficiently close to y then f(z)−f(y)
z−y ≤ N

and this implies that f(z)− f(y) ≤ N(z− y). Likewise, if x < y is sufficiently close

to y then f(y)−f(x)
y−x ≤ N and this implies that f(y)−f(x) ≤ N(y−x). If we choose

N sufficiently large then we can say that if z and x are such that

y − 1

N
< x < y < z < y +

1

N
and

1

N
≤ y ≤ 1− 1

N

, then

f(z)− f(y) ≤ N(z − y)andf(y)− f(x) ≤ N(y − x)

. Combining these two inequalities gives

f(z)− f(x) ≤ N(z − x).

So what we have show is that if f is differentiable at the point y in (0, 1), then

there exists an integer N such that

f(z)− f(x) ≤ N(z−x)whenevery− 1

N
< x < y < z < y+

1

N
and

1

N
≤ y ≤ 1− 1

N
.

Let DN denote the set of functions f in C([0, 1]) such that there exists a point

y ∈ (0, 1) such that f(z)− f(x) ≤ n(z − x) whenever y − 1
N < x < y < z < y + 1

N

and 1
N ≤ y ≤ 1− 1

N . Then the union D1∪D2∪ ... contains the set of functions that
are differentiable at some point y in (0, 1). Denote this set by D. We will show that

each set DN is closed and nowhere dense. Therefore the set of functions in C([0, 1])

that are differentiable at at least one point y in (0, 1) is meagre. This shows that

the set of functions in C([0, 1]) that are nowhere differentiable is comeagre.

Let’s first show that DN is closed. Let f1, f2, ... be a sequence of functions in DN

converging to f . There corresponds to this sequence a sequence of points y1, y2, ...

in
[
1
N , 1−

1
N

]
such that for each n = 1, 2, ... we have fn(z) − fn(x) ≤ N(z − x)

whenever yn − 1
N < z < yn < x < yn + 1

N . Since
[
1
N , 1−

1
N

]
is compact there

exists a subsequence yk1 , yk2 , ... of y1, y2, ... converging to a point y in
[
1
N , 1−

1
N

]
.

Therefore f(z) − f(x) ≤ N(z − x) whenever y − 1
N < z < y < x < y + 1

N . This

implies that f belongs to DN . Therefore DN is a closed set.

Let’s show that DN is nowhere dense. What does this mean? It means that DN

does not contain any open subsets of C([0, 1]). Any open subset contains an open

ball around any of its points so it is enough to show that DN does not contain any

open balls. Now let’s use another theorem of Weierstrass called the Weierstrass

approximation theorem. This theorem says that the set of polynomial function

is a dense subset of the metric space C([0, 1]). So if DN does contain an open

set then that open set contains a polynomial function f0. And then centered at

that polynomial function f0 must be an open ball contained in the open set and
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so contained in DN . So to show that DN is nowhere dense we can show that if

f0 is a polynomial function and ϵ is a positive real number, then Bϵ(f0) contains

points not in DN (that is, contains a point f such that for all y ∈ (0, 1) we have

f(z)− f(x) > N(z − x) whenever

y − 1

N
≤ z < y < x < y +

1

N
and

1

N
≤ y ≤ 1− 1

N
).

Now recall The Mean Value Theorem.

The Mean Value Theorem: Let f : [a, b] → R be a continuous function on the

closed interval [a, b] and differentiable on the open interval (a, b) where a < b. Then

there exists a point c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Since f0 is a polynomial function it is continuously differentiable on [0, 1]. Therefore

there exists a number C such that C ≤ f ′0(c) for all c in (0, 1). By The Mean Value

Theorem this implies that C ≤ f0(z)−f0(x)
z−x whenever 1 > z > x > 0. That is,

f0(z)− f0(x) ≥ C(z − x) whenever 0 < x < z < 1.

Let’s try to modify f0 to get a nowhere differentiable function while staying

close to f0. Let f : [0, 1] → R be the element of C([0, 1]) defined by the equation

f(x) = f0(x) +
1
M sin(M2x). Note that two things happen as M gets large. First

for a fixed x the number 1
M sin(M2x) gets very small. So if we choose M large

enough we can make f belong to the ball

Bϵ(f0) = {g ∈ C([0, 1]) : sup
x∈[0,1]

|g(x)− f0(x)| < ϵ}.

The second thing that happens is that 1
M sin(M2x) becomes a function that oscil-

lates faster and faster. This will be what allows us to make f not belong to DN

(that is, for all 1
N ≤ y ≤ 1− 1

N there exists

y − 1

N
< x < y < z < y +

1

N

such that f(z)− f(x) ≥ N(z − x))

Why is this so? Let y be such that 1
N ≤ y ≤ 1− 1

N and choose z and x such that

y − 1

N
< x < y < z < y +

1

N

. Then we have that

f(z)−f(x) = f0(z)−f0(x)+
1

M
sin(M2z)− 1

M
sin(M2x) ≥ C(z−x)+ 1

M
(sin(M2z)−sin(M2x))
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Let’s use The Mean Value Theorem again. The derivative of 1
M sin(M2x)isM cos(M2x).

By The Mean Value Theorem there exists a point c in (x, z) such that

M cos(M2c) =
1
M sin(M2z)− 1

M sin(M2x)

z − x
.

Therefore

f(z)− f(x) ≥ (C +M cos(M2c))(z − x).

What I need to show now is the following: Let r,K, and J be positive numbers.

Then there exists points z and x such that y− r < x < y < z < y+ r and a number

M > J such that
1
M sin(M2z)− 1

M sin(M2x)

z − x
≥ K.

If this is true then for r = 1
N we can choose points x and z and a number M > 0

so that
1
M sin(M2z)− 1

M sin(M2x)

z − x

is bigger than N − C and such that f belongs to Bϵ(f0). We will then have that

f(z)− f(x) > N(z − x).

And this will imply that f does not belong to DN . This will show that DN is

nowhere dense. I’ll leave this claim to you because I can’t figure out how to do it.

Then we will have shown that each the set of functions in C([0, 1]) that are

differentiable at some point y in (0, 1) is a meagre set because it is contained in the

countable union of the closed and nowhere dense sets D1, D2, .... This means that

the set of functions in C([0, 1]) that are nowhere differentiable is comeagre.

34. HILBERT SPACE

Let V be a Banach space and let V0 be a closed subspace of V . The set V/V0

is a set of equivalence classes of V such that if w ∈ V/V0, then v1, v2 ∈ w if and

only if there exists v0 ∈ V0 such that v1 + v0 = v2. From this construction we

can define a map π : V → V/V0 that sends v ∈ V to the equivalence class to

which it belongs π(v) ∈ V/V0. We have shown that V/V0 with the norm given

by ∥w∥V/V0
= inf{∥v∥V : π(v) = w} is a Banach space. A question we could ask

about this Banach space is if w ∈ V/V0, then does there exist a v ∈ V such that

∥w∥V/V0
= ∥v∥V ? That is, is the infimum in the equation ∥w∥V/V0

= inf{∥v∥V :

π(v) = w} achieved?

Consider the following counterexample. Let

V = {f : [0, 1] → R : f is continuous and f(0) = 0}.

The set V with the norm given by ∥f∥V = max{|f(x)| : x ∈ [0, 1]} (the ”sup

norm”) is a Banach space. Let V0 = {f ∈ V :
∫
f = 0}. Define F : V → R by the
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formula F (f) =
∫
f . This is a bounded linear operator. Since F is bounded the set

F−1({0}) is a closed subset of V . It is now easy to see that V0 is a closed subspace

of V . Therefore V/V0 with the norm given by

∥w∥V/V0
= inf{∥f∥V : π(f) = w}

is a Banach space. Is the infimum achieved?

What is V/V0? If w ∈ V/V0, then f1, f2 ∈ w if and only if there exists f ∈ V0

such that f1+f0 = f2. This implies that
∫
f1 =

∫
f2. Now suppose that f1, f2 ∈ V

are such that
∫
f1 =

∫
f2. Let f0 = f2 − f1. Then f0 ∈ V0 and f1 + f0 = f2. That

is, f1, f2 ∈ π(f2−f1). This shows that two functions f1, f2 ∈ V belong to the same

element w ∈ V/V0 if and only if
∫
f1 =

∫
f2.

Let’s consider the element w in V/V0 that is the set of functions in V whose

integral is equal to one half. Does there exist a function f in V such that ∥w∥V/V0
=

∥f∥V ? Firstly, what is ∥w∥V/V0
? It is equal to 1

2 . Any function f ∈ V that that

takes values no greater than 1
2 cannot be in w because for such a function we have∫

f < 1
2 . Therefore if f ∈ w, then ∥f∥V > 1

2 . However consider the sequence

of functions f1, f2, ... defined by fn(x) = nyx for 0 ≤ x ≤ 1
n and fn(x) = y for

1
n ≤ x ≤ 1 where y is the number that solves the equation

∫
f = 1

2 . That is, the

equation
y

2n
+ y

(
1− 1

n

)
=

1

2

. The sequence f1, f2, ... belongs to w and the sequence of numbers ∥f1∥V , ∥f2∥V , ...
converges to 1

2 . This shows that ∥w∥V/V0
= 1

2 and that there exists no f ∈ w such

that ∥w∥V/V0
= ∥f∥V .

When is the answer yes? Let V = R2. Let V0 be the line defined by the

equation y = x (which is a closed subspace of R2). Then V/V0 with the norm

∥w∥V/V0
= inf{∥v∥R2 : π(v) = w} is a Banach space. An element of V/V0 is simply

a translation of V0. That is, a line defined by the equation y = x + c where c is

a number. So asking whether there exists a point v such that ∥w∥V/V0
= ∥v∥ is

the same as asking if there is a point v ∈ w that is closest to the origin. It must

be that this point should the vector v ∈ w that is orthogonal to V0. That is, if

v = (v1, v2) is the solution then it should satisfy the equation (v1, v2) · (1, 1) = 0.

That is v1 = −v2. And if w is the line defined by the equation y = x + c then we

also need that v2 = v1 + c. Therefore v2 = c
2 and v1 = − c

2 . So there exists a point

v ∈ V such that ∥w∥V/V0
= ∥v∥V and this point is unique.

This suggests that the answer to our question is ”yes” when there is a notion of

orthogonality in the Banach space V .

So let V be a Banach space. Let’s try to construct a function < ·, · >: V ×V → R

such that two vectors v1, v2 ∈ V are orthogonal if and only if < v1, v2 >= 0. Now
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for a general Banach space it is not completely clear what orthogonality should

mean. For example, consider the set of continuos functions f : [0, 1] → R with the

sup norm. This is a Banach space. What does it mean for two continuous functions

to be orthogonal? To get around this problem let’s try to write down the properties

we expect < ·, · > to have. We can do this by thinking about the set R2. Let’s

ask what are the defining properties of < ·, · > on R2 and then apply this as our

definition of orthogonality in an arbitrary Banach space.

In R2 the dot product of two vectors gives an idea of the angle between the two

vectors. Let x = (x1, x2) and y = (y1, y2) be vectors in R2 and let θ be the angle

between these vectors. It is possible to show that ∥x∥∥y∥ cos(θ) =< x, y > where

< x, y >= x1y1+x2y2. We also have that
√
< x, x > = ∥x∥ for any vector x in R2.

Let’s start with the idea that if v, w are elements of a Banach space V then there

exists an angle θ between v and w. Let’s require that the function < ·, · > tells us

(for example, through an equation like the one above for R2) what θ is.

A property we would like < ·, · > to have is symmetry. That is the angle between

v and w is the same as the angle between w and v. That is < v,w >=< w, v > for

all v, w ∈ V .

Let’s just demand that the equation ∥x∥∥y∥ cos(θ) =< x, y > is the defining

property of < ·, · > for a Banach space. What I would like to do is to write

down some properties for < ·, · > that satisfy this definition and then show that

in a Banach space we can derive the equation ∥x∥∥y∥ cos(θ) =< x, y > from these

properties. My guess is that this can be done.

The function < ·, · >: V × V → R where V is a vector space is called an inner

product and I’m told its defining properties are

(1) Symmetry: < v,w >=< w, v > for all v, w ∈ V . (2) Bilinearity: < v +

v′, w >=< v,w > + < v′, w > for all v, v′, w ∈ V and < λv,w >= λ < v,w > for

all v, w ∈ V and λ ∈ R. (3) Positive definite: < v, v >≥ 0 with equality if and only

if v = 0.

I’m not sure if starting from these properties one can show that if V is a Banach

space then it makes sense to say that the angle between points x, y ∈ V is given by

the equation ∥x∥∥y∥ cos(θ) =< x, y >. Doing this certainly gives a < ·, · > which

has the symmetry property. I think the other properties will follow if we agree that

the angle between a vector and itself is zero and that the angle between two vectors

in the same ”quadrant” is between zero and ninety degrees.

One thing we can say is that if < ·, · > is an inner product on a vector space

V , then the function ∥ · ∥V : V → R defined by the formula ∥v∥V =
√
< ·, · > is a

norm.
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Let’s prove this. We get nonnegativity by the positive definite property of <

·, · >. We get linearity by the bilinear and symmetry property of < ·, · >:

∥λv∥V =
√
< λv, λv > =

√
λ < v, λv > =

√
λ < λv, v >

=
√
λ2 < v, v > = |λ|

√
< v, v > = |λ|∥v∥V .

For the triangle inequality we want to show that
√
< v + w, v + w > ≤ √

< v, v >+
√
< v, v >. Since each side is positive this is equivalent to showing the inequality

holds when we square each side. That is, it is equivalent to show that

< v + w, v + w >≤< v, v > +2
√
< v, v >< w,w >+ < w,w >

.Using the bilinear and symmetry property of < ·, · > this is equivalent to showing

that

< v,w >2≤< v, v >< w,w > .

By the bilinear property of < ·, · > we can assume that ∥v∥V = ∥w∥V = 1 (just

divide both sides by ∥v∥2V ∥w∥2V and relabel v and w). So the inequality we want

to show is < v,w >2≤ 1 which is the same as showing that

< v,w >≤ 1.

Let’s try to show this inequality. The positive definite, symmetry, and bilinear

property of < ·, · > implies that

< v, v > −2 < v,w > + < w,w >=< v − w, v > + < w − v, w >

=< v − w, v > − < v − w,w >=< v, v − w > − < w, v − w >

=< v, v − w > + < −w, v − w >=< v − w, v − w >≥ 0.

In our case this inequality implies that

1− 2 < v,w > +1 ≥ 0.

Therefore < v,w >≤ 1 which is the thing we wanted to show.

Let’s go back to our original problem. Let V be a Banach space and let V0 be a

closed subspace of V . Then V/V0 with the norm

∥w∥V V0 = inf{∥v∥V : π(v) = w}

is a Banach space. It will turn out that if V is an inner product space such that

∥v∥V =< v, v > for all v in V then for each w ∈ V/V0 there exists a point v ∈ w

such that ∥w∥V/V0
= ∥v∥V . This means that v is the element of w that is at

minimum distance from the origin. This will be a useful property so let’s distinguish

Banach spaces V that are also inner product spaces with the property that ∥v∥V =
√
< v, v > for all v in V by calling them Hilbert spaces.
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35. THE CLOSEST POINT TO A CLOSED SUBSPACE OF A HILBERT

SPACE

Recall that a Hilbert space is a Banach space V whose norm is obtained from

an inner product < ·, · >: V × V → R such that ∥v∥ =
√
< v.v > for all v in V .

That is, a Hilbert space is a Banach space in which we have a coherent way to

measure the angle between any two vectors.

Our motivation for defining Hilbert spaces was the following minimization prob-

lem. Let V be a Banach space and let V0 be a closed subspace of V . Let v be a

point in V . Is there a point in {v}+ V0 that is closest to the origin?

Recall that V/V0 with the norm ∥ · ∥V/V0
: V/V0 → R defined by the equation

∥w∥V/V0
= inf{∥v∥V : π(v) = w} is a Banach space and that an element w of V/V0

is defined by the property that v1, v2 ∈ V belong to w if and only if there exists

a point v0 in V0 such that v1 + v0 = v2, that is, if and only if v2 − v1 belongs to

V0 and this implies that w can be represented by the set V0 + {v1}. That is, if v

belongs to w then v − v1 belongs to V0 so that v belongs to V0 + {v1}. And if v

belongs to V0 + {v1} then v − v1 belongs to V0 which implies that v belongs to w.

We showed last time that the minimization problem:

”Let V be a Banach space and let V0 be a closed subspace of V . Let v be a point

in V . Is there a point in {v}+ V0 that is closest to the origin?”

does not always have a solution. Our intuition suggests that the solution to

this problem must be the point x in {v} + V0 that is orthogonal to V0. Intuition

also suggests that the solution will be unique – there will not be more than one in

{v}+ V0 that is orthogonal to V0. But orthogonality requires that we can measure

the angle between vectors. This is why we introduced the idea of a Hilbert space.

(If V is a Hilbert space and v1, v2 are points in V then we define the angle θ between

x and y to be the solution to the equation ∥x∥∥y∥ cos(θ) =< x, y >.)

Note that if V is a Hilbert space then the inner product on V is determined by

the norm because

< v,w >=
< v + w, v + w > − < v, v > − < w,w >

2
=

∥v + w∥2 − ∥v∥2 − ∥w∥2

2
.

Note also that given a Banach space you can try to define an inner product using

this formula. You can see that it will be positive definite and symmetric. It may

not be bilinear. It is possible to show that a Banach space is a Hilbert space if and

only if

∥u+ v + w∥2 = ∥u+ v∥2 + ∥u+ w∥2 + ∥v + w∥2 − ∥v∥2 − ∥u∥2 − ∥w∥2.

The usual norm on Euclidian space is better than other norms because it satisfies

this. (How many inner products are there on Euclidian space?)

So one example of a Hilbert space is the set Rn with the usual norm.
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Another example of a Hilbert space is L2(E) where E is a measurable subset

of Rn and the inner product is defined by the equation < f, g >=
∫
fg (its easy

to see that this is positive definite, symmetric, and bilinear). One concern is that

< f, g >= ∞ for some functions f and g but this is ruled out by Holder’s inequality

which implies that
∫
fg ≤ ∥f∥L2∥g∥L2 . We have that ∥f∥L2 =

√
< f, f > and

previously shown that L2(E) with the L2-norm is complete. Therefore L2(E) with

this inner product is a Hilbert space.

Let’s prove the following proposition.

Proposition: Let V be a Hilbert space, v ∈ V a vector and V0 ⊆ V a closed

subspace. Then there exists a unique ”closest point” to v contained in V0.

Consider the map π : V → V/V0. We have

∥π(v)∥V/V0
= inf{∥u∥V : π(u) = π(v)}

= inf{∥u∥V : there exists v0 ∈ V0 such that u+ v0 = v}

= inf{∥v − v0∥V : v0 ∈ V0}.

We will prove the Proposition if we can show that there exists a unique point y in

V0 such that ∥v − y∥V = ∥π(v)∥V/V0
. Let C denote ∥π(v)∥V/V0

. For any ϵ > 0 we

can choose a point vϵ in V0 such that C ≤ ∥v−vϵ∥V < C+ϵ. Consider the sequence

of points v1, v 1
2
, v 1

3
, · · · inV0. Let’s try to show this is a Cauchy sequence. If it is

a Cauchy sequence then it converges to some point y in V0. We then have that

∥v − y∥V = C. So showing that the sequence v1, v 1
2
, v 1

3
, · · · is a Cauchy sequence

shows that there exists a closest point to v in V0.

Consider two points a, b in V0 such that ∥v − a∥V and ∥v − b∥V are less than

C + ϵ. What can we say about ∥a − b∥V ? Because V is a Hilbert space we have

that C2 ≤< v − a, v − a >< (C + ϵ)2 and C2 ≤< v − b, v − b >< (C + ϵ)2.

Consider the midpoint of a and b. Let w = v− a+b
2 and d = a−b

2 . Then we have

that v − a = w − d and v − b = w + d. We then have that

(C + ϵ)2 >< w − d,w − d >=< w,w > −2 < w, d > + < d, d >,

(C2 + ϵ)2 >< w + d,w + d >=< w,w > +2 < w, d > + < d, d > .

Adding these gives < w,w > + < d, d >< (C+ ϵ)2. Since C ≤< w,w > we have

that < d, d >< 2Cϵ+ ϵ2. Therefore ∥a− b∥V < 2
√
2Cϵ+ ϵ2.

Let ϵ > 0. Choose N such that

2

√
2C

1

N
+

(
1

N

)2

< ϵ

. Then

∥v 1
n
− v 1

m
∥V < ϵ
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whenever n,m ≥ N . This shows that the sequence v1, v 1
2
, · · · is a Cauchy sequence

which shows that there exists a closest point to v in V0. Call one such closest point

y.

Let’s show that the point y is the only closest point. Let u denote the point

v − y.

For any vector v0 ∈ V0 and any real number λ we have that ∥u∥V ≤ ∥u − λy∥.
This implies that

< u, u >≤< u− λy, u− λy >=< u, u > −2λ < u, y > +λ2 < y, y > .

Therefore

2λ < u, y >≤ λ2 < y, y > .

If < y, y >= 0 then y = 0 so that if we choose a nonzero λ it must be that

< u, y >= 0. If < y, y >> 0 then it also must be that < u, y >= 0 because

otherwise we could choose a small positive λ and violate the inequality. Let V ⊥
0

denote the set

{v ∈ V :< v, v0 >= 0 for all v0 ∈ V0}

. What we have shown is that u belongs to V ⊥
0 .

Now let y′ denote a point in V0 such that v − y′ belongs to V ⊥
0 . Then y − y′

belongs to V0 and (v − y′)− (v − y), which equals y − y′, belongs to V ⊥
0 . That is,

< y − y′, y − y′ >= 0 and this implies that y = y′. Therefore the closest point is

unique.

36. THE RIESZ REPRESENTATION THEOREM

Let S be a set. Define the set l2(S) to be the set of functions f : S → R such

that
∑

s∈S f(s)
2 < ∞. If S is infinite this sum is meant to mean the supremum

over all finite sums.

Define the function < f, g >: l2(S)× l2(S) → R by the formula

< f, g >=
∑
s∈S

f(s)g(s).

I claim that this is an inner product. It is easy to see that this function is symmetric,

bilinear, and positive definite. We only need to check that < f, g > | <∞
for all f, g in l2(S). Note that

(f(s)− g(s))2 = f(s)2 − 2f(s)g(s) + g(s)2 ≥ 0

and this implies that ∑
s∈S

f(s)g(s) ≤
∑
s∈S

f(s)2 + g(s)2

2
.
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This shows that < f, g >< ∞. We also have that if f is in l2(S), then −f is in

l2(S). And by bilinearity < −f, g >= − < f, g >> −∞. Therefore < ·, · > is

an inner product. So l2(S) is a normed vector space. Note also that the sum is

absolutely convergent so summing the terms of the series in a different order will

not change the value to which it converges.

Let λ : l2(S) → R be a bounded linear function. Let es be the element of l2(S)

defined by es(t) = 1 if t = s otherwise es(t) = 0. Now define a function f : S → R

by f(s) = λ(es). We want to show that f belongs to l2(S) and that for any function

g in l2(S) we have that < f, g >= λ(g). So far we have that < f, es >= λ(es) for

all s in S.

We want to show that f is a square summable function. That is, that f belongs

to l2(S).

We also want to show for each function g in l2(S) that < f, g >= λ(g). If g has

finite support then that < f, g >= λ(g) follows from the bilinearity of < ·, · >. I

now claim that each function g in l2(S) is the limit of some sequence of functions

in l2(S) that have finite support.

What does it mean for a sequence of functions g1, g2, · · · in l2(S) to converge to

g. It means that limn ∥g − gn∥ℓ2 = 0. That is, it means that

lim
n

√∑
s∈S

(g(s)− gn(s))2 = 0.

I claim that if a function g belongs to l2(S) then it does not have uncountable

support. That is, the set {s ∈ S : g(s) ̸= 0} is not uncountable. I claim that if

a function g : S → R has uncountable support then the sum
∑

s ∈ Sg(s)2 (the

supremum over all finite sums) diverges and therefore g does not belong to l2(S).

How can I show this? Let K be an uncountable set of positive numbers. Consider

the set Kn = {k ∈ K : k ≥ 1
n}. I claim that there exists an integer n such that the

set Kn is infinite. If this is not true then K is countable because it can be written as

K1 ∪K2 ∪ · · · which is a countable union of finite sets and so is a countable set. So

there exists such an integer n and for this n we have that
∑

k∈K k >
∑

k∈Kn

1
n = ∞.

This proves the claim.

So if g belongs to l2(S) then g has countable support s1, s2, · · · . Define gn by

the formula

gn = g(s1)es1 + g(s2)es2 + · · ·+ g(sn)esn .

Then

g − gn = g(sn+1)esn+1 + g(sn+2)esn+2 + · · ·
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which converges to the zero function as n tends to infinity.Therefore

lim
n

∥g − gn∥ℓ2 = ∥ lim
n
g − gn∥ = 0

by the continuity of the norm. That is, gn converges to g in the ℓ2 norm.

Now let g belong to l2(S) and let g1, g2, · · · be a sequence of functions with finite

support in l2(S) which converge to g. Then by the continuity of λ and the ℓ2 inner

product we have that

< g, f >= lim
n
< gn, fn >= lim

n
λ(gn) = λ(g).

Now we would like to show that f belongs to l2(S). That is we would like to show

that
∑

s∈S f(s)
2 < ∞. Let’s recall the definition of f . We defined f : S → R by

the formula f(s) = λ(es) where es(t) = 1 if t = s and 0 otherwise.

Recall the operator norm. We have that ∥λ∥ is the smallest number C such

that |λ(g)| ≤ C∥g∥ for all g in l2(S). Let S0 be a finite subset of S and define the

function g : S → R by the formula g(s) = f(s) if s ∈ S0 and g(s) = 0 otherwise.

Because g has finite support it is an element of l2(S). We then have that

∥g∥2 =
∑
s∈S0

f(s)2 =< f, g >= λ(g) ≤ ∥λ∥∥g∥.

Dividing both sides by ∥g∥ gives

∥g∥ ≤ ∥λ∥and
∑
s∈S0

f(s)2 ≤ ∥λ∥.

We know that ∥λ∥ is finite because we assumed λ to be bounded. Since this

inequality holds for all finite subsets S0 of S the supremum over all finite subsets

is no greater than λ. In symbols this means that
∑

s∈S f(s)
2 ≤ ∥λ∥. Therefore f

belongs to l2(S).

What we have shown is the following:

Theorem: If λ : l2(S) → R is a bounded linear function, then there exists an

element f ∈ ℓ2(S) (defined by the formula f(s) = λ(es)) such that λ(g) =< f, g >

for each g in l2(S).

Now let f belong to l2(S). Define λ : l2(S) → R by the formula λ(g) =< g, f >.

By bilinearity of < ·, · > the function λ is linear. Recall The Cauchy Schwartz

Inequalityhttp://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality

| < g, f > | ≤ ∥f∥∥g∥

with equality if and only if f = αg for some α ∈ R. This implies that λ is bounded

and that ∥λ∥ = ∥f∥. This shows that the map f 7→< ·, f > is an isometry.

The previous theorem shows that is is surjective. Therefore we have that l2(S)

http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
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and its dual are isometrically isomorphic via this map. This is called The Riesz

Representation Theorem.

37. EVERY HILBERT SPACE IS ISOMETRICALLY ISOMORPHIC TO

l2(S) FOR SOME S

Last time I proved The Riesz-Fischer Theorem.

The Riesz-Fischer Theorem: The Hilbert space l2(S) is isometrically isomorphic

to its dual via the map f 7→< ·, f >.
I will now show that if V is a Hilbert space then V is isomorphically isometric

to l2(S) for some set S.

Because V is a Hilbert space it has a Hilbert basis {vs}s∈S where S is an index

set for the Hilbert basis. We will use this as the set S when talking about l2(S).

In the last email I showed that any function in l2(S) can be approximated as the

limit of finite linear combinations of functions from the orthonormal set {es}s∈S

where es(t) = 1 if t = s and 0 otherwise.

Define the function ϕ : l2(S) → V by saying that it is continuous linear map

such that ϕ(es) = vs. This map is well defined because if g is an element of l2(S)

with finite support then g can be written as a finite linear combination of elements

of {es}s∈S and then ϕ(g) is given by the linearity of ϕ. Otherwise the support of g

is countable (we showed before that it cannot be uncountable) in which case g can

be written as the limit of functions which have finite support. Then ϕ(g) is given

by the continuity of g.

I claim that the function ϕ is an isometric isomorphism. It is isometric because iff,

g belong to l2(S), then f can be written as limn

∑
s∈Sn

f(s)es and g can be written

as g = limn

∑
t∈Sn

g(s)es where S1, S2, · · · is a sequence of finite sets increasing to

a set that contains the support of f and the support of g. Using the continuity of

ϕ and the continuity of the inner product on V we get

< ϕ(f), ϕ(g) >V = lim
n
<
∑
s∈Sn

f(s)vs,
∑
t∈Sn

g(t)vt >V

= lim
n

∑
s∈Sn

f(s)g(s) =< f, g >l2 .

Therefore ∥ϕ(f)∥V = ∥f∥l2 .
Why is the function ϕ a bijection?

It is surjective because each point v in V can be written as the limit of finite

linear combinations of element of the set {vs}s∈S . From this it is easy to construct

the function f in l2(S) such that ϕ(f) = v.

Why is the function ϕ injective? Any isometry is injective because if f ̸= g,

then ∥f − g∥l2 ̸= 0 so that ∥ϕ(f − g)∥V = ∥ϕ(f) − ϕ(g)∥V ̸= 0 which implies that

ϕ(f) ̸= ϕ(g). Since ϕ is an isometry it is injective.
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So we have proved the following theorem.

Theorem: If V is a Hilbert space, then there exists a set S such that l2(S) is

isometrically isomorphic to V .

The cardinality of the set S is called the Hilbert dimension of V .

Note that if the sets S and T have the same cardinality then l2(S) is isometrically

isomorphic to l2(T ). This is true by the above construction using {et}t∈T as the

Hilbert basis of l2(T ).

38. A HILBERT BASIS FOR L2

Let E be a measurable subset of Rn. Recall that L2(E) is the set of measurable

functions (modulo functions that are the same almost everywhere) f : E → R such

that
(∫
f2
)

1
2 < ∞. With the inner product < ·, · >: L2(E) × L2(E) → R defined

by < f, g >=
(∫
fg
) 1

2 this is a Hilbert space.

What is a Hilbert basis for L2(E)? If E has measure zero then the only element

of L2(E) is the zero function. Therefore {0} is an orthonormal basis for L2(E)

because it is a maximal orthonormal subset of L2(E).

Suppose that E = [0, 2π]. We have that {sin(nx), cos(nx)}∞n=0 is an orthogo-

nal subset of L2(E). Let’s try to get an orthonormal subset of L2(E). We have∫ 2π

0
sin(nx)2 = π for n = 1, · · · and 0 for n = 0. We have

∫ 2π

0
cos(nx)2 = π for

n = 1, 2, · · · and 2π for n = 0. Therefore

{ sin(nx)√
π

,
cos(nx)√

π
,

1√
2π

}∞n=1

is an orthonormal subset of L2(E). Is it maximal? That is, is each element of

L2(E) the limit of finite linear combinations of elements of this set. Another way

to say this is that any function in L2(E) can be approximated by a finite linear

combination of sines and cosines.

We will prove that the answer is yes. Let A be the set of functions that are finite

linear combinations of sines and cosines on [0, 2π]. The set A is much smaller than

L2([0, 2π]).

Let B be the set of continuous functions on [0, 2π] having the same values at

their endpoints. We have that A is contained in B and that B is contained in

L2([0, 2π]).

Let S denote the set of simple functions on [0, 2π]. The set S is contained in

L2([0, 2π]). We also know that any function in L2([0, 2π]) is equal to the limit of

simple functions.

Let T denote the set of step functions on [0, 2π]. A step function is a linear

combination of characteristic functions on intervals. I claim that any simple func-

tion is equal to the limit in the L2 norm of step functions. To see this, let K be a
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measurable subset of [0, 2π]. Let ϵ > 0. By the definition of outer measure there

exists a sequence of intervals I1, I2, · · · which we can assume to be disjoint whose

union contains K and such that

µ(K) ≤
∞∑
i=1

µ(Ii) ≤ µ(K) + ϵ.

We can choose finitely many of these intervals I1, I2, · · · , In such that

µ(K)− ϵ <

n∑
i=1

µ(Ii) < µ(K) + ϵ.

Then we have that

∥χE −
n∑

i=1

χIi∥L2 =

√√√√∫ (χE −
n∑

i=1

χIi)
2

=

√√√√µ(E△
n⋃

i=1

Ii) ≤ 2
√
2ϵ.

Since we can approximate characteristic functions arbitrarily well we can approx-

imate simple functions arbitrarily well. Note that this is convergence in the L2

norm. Such convergence would not hold in the sup norm for example because the

symmetric difference is never empty.

Since we can write any function in L2([0, 2π]) as a limit of simple functions and

we can write any simple function as a limit of step functions we can also write any

function in L2([0, 2π]) as a limit of step functions.

So far we have that A which is the set of finite linear combinations of sines and

cosines on [0, 2π] is a subset B which is the set of continuous functions on [0, 2π]

with equal values at its endpoints. We also have that the set D which is the set of

step functions on [0, 2π] is a dense subset of L2(E).

I now claim that any step function is a limit in the L2 norm of continuous

functions on [0, 2π] with equal values at its endpoints. This is fairly obvious. Just

mollify the step function you want to get a piecewise continuous function. This

piecewise continuous function can be made arbitrarily close to the step function in

the L2 norm.

Now recall The Stone-Weierstrass Theorem.

The Stone-Weierstrass Theorem: Let X ⊂ Rn be a compact set. Then any

continuous function on X can be written as the limit of a uniformly convergent

sequence of polynomials.

Now suppose n = 2. Note that the set B which is the set of continuous functions

on [0, 2π] which have the same value at their endpoints is in bijection the set

D of continuous functions on the unit circle S1 ⊆ R2. The bijection is f(θ) =
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g(sin(θ), cos(θ)). The Stone-Weierstrass Theorem implies that any element ofD can

written as the limit of a uniformly convergent sequence of polynomials and thus any

element of A can be written as the limit of a uniformly convergent sequence whose

elements are finite linear combinations of sines and cosines. Uniform convergence

implies convergence in L2.

Therefore any function in L2([0, 2π]) can be approximated in the L2 norm by

a simple function and each simple function can be approximated in the L2 norm

by a step function and each step function can be approximated in the L2 norm by

a continuous function with the same value at its endpoints and each continuous

function with the same value at its endpoints can be uniformly approximated by a

polynomial of sines and cosines. Since uniform convergence implies convergence in

L2 we have that any function in L2([0, 2π]) can be approximated in the L2 norm

by a polynomial of sines and cosines.

Hopefully a polynomial of sines and cosines can be approximated by our or-

thonormal set { sin(nx)√
π

, cos(nx)√
π

, 1√
2π

}∞n=1. If this is true then this orthonormal set is

a Hilbert basis for L2([0, 2π]).
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